scholarly journals Synoptic Ozone, Cloud Reflectivity, and Erythemal Irradiance from Sunrise to Sunset for the Whole Earth as viewed by the DSCOVR spacecraft from Lagrange-1

Author(s):  
Jay Herman ◽  
Liang Huang ◽  
Richard McPeters ◽  
Jerry Ziemke ◽  
Alexander Cede ◽  
...  

Abstract. The EPIC instrument onboard the DSCOVR spacecraft, located near the Earth-Sun gravitational plus centrifugal force balance point, Lagrange-1, measures Earth reflected radiances in 10 wavelength channels ranging from 317.5 nm to 779.5 nm. Of these channels, four are in the UV range 317.5, 325, 340, and 388 nm, which are used to retrieve O3, 388 nm scene reflectivity (LER Lambert Equivalent Reflectivity), SO2, and aerosol properties. These quantities are derived synoptically for the entire sunlit globe from sunrise to sunset every 68 minutes or 110 minutes for summer or winter at the receiving antenna in Wallops Island, Virginia, respectively. Depending on solar zenith angle, either 317.5 or 325 nm channels are combined with 340 and 388 nm to derive ozone amounts. As part of the ozone algorithm, the 388 nm channel is used to derive LER. The retrieved ozone amounts and LER are combined to derive the erythemal irradiance for the sunlit Earth's surface at a resolution of 18 × 18 km2 near the center of the Earth's disk using a computationally efficient approximation to a radiative transfer calculation of irradiance. Corrections are made for altitude above sea level and for the reduced transmission by clouds based on retrieved LER.

2018 ◽  
Vol 11 (1) ◽  
pp. 177-194 ◽  
Author(s):  
Jay Herman ◽  
Liang Huang ◽  
Richard McPeters ◽  
Jerry Ziemke ◽  
Alexander Cede ◽  
...  

Abstract. EPIC (Earth Polychromatic Imaging Camera) on board the DSCOVR (Deep Space Climate Observatory) spacecraft is the first earth science instrument located near the earth–sun gravitational plus centrifugal force balance point, Lagrange 1. EPIC measures earth-reflected radiances in 10 wavelength channels ranging from 317.5 to 779.5 nm. Of these channels, four are in the UV range 317.5, 325, 340, and 388 nm, which are used to retrieve O3, 388 nm scene reflectivity (LER: Lambert equivalent reflectivity), SO2, and aerosol properties. These new synoptic quantities are retrieved for the entire sunlit globe from sunrise to sunset multiple times per day as the earth rotates in EPIC's field of view. Retrieved ozone amounts agree with ground-based measurements and satellite data to within 3 %. The ozone amounts and LER are combined to derive the erythemal irradiance for the earth's entire sunlit surface at a nadir resolution of 18 × 18 km2 using a computationally efficient approximation to a radiative transfer calculation of irradiance. The results show very high summertime values of the UV index (UVI) in the Andes and Himalayas (greater than 18), and high values of UVI near the Equator at equinox.


2021 ◽  
Author(s):  
Vitor Hugo Almeida Junior ◽  
Marcelo Tomio Matsuoka ◽  
Felipe Geremia-Nievinski

<p>Global mean sea level is rising at an increasing rate. It is expected to cause more frequent extreme events on coastal sites. The main sea level monitoring systems are conventional tide gauges and satellite altimeters. However, tide gauges are few and satellite altimeters do not work well near the coasts. Ground-based GNSS Reflectometry (GNSS-R) is a promising alternative for coastal sea level measurements. GNSS-R works as a bistatic radar, based on the use of radio waves continuously emitted by GNSS satellites, such as GPS and Galileo, that are reflected on the Earth’s surface. The delay between reflected and direct signals, known as interferometric delay, can be used to retrieve geophysical parameters, such as sea level. One advantage of ground-based GNSS-R is the slant sensing direction, which implies the reflection points can occur at long distances from the receiving antenna. The higher is the receiving antenna and the lower is the satellite elevation angle, the longer will be the distance to the reflection point. The geometrical modeling of interferometric delay, in general, adopts a planar and horizontal model to represent the reflector surface. This assumption may be not valid for far away reflection points due to Earth’s curvature. It must be emphasized that ground-based GNSS-R sensors can be located at high altitudes, such in lighthouses and cliffs, and GNSS satellites are often tracked near grazing incidence and even at negative elevation angles. Eventually, Earth’s curvature would have a significant impact on altimetry retrievals. The osculating spherical model is more adequate to represent the Earth’s surface since its mathematical complexity is in between a plane and an ellipsoid. The present work aims to quantify the effect of Earth’s curvature on ground-based GNSS-R altimetry. Firstly, we modeled the interferometric delay for each plane and sphere and we calculated the differences across the two surface models, for varying satellite elevation and antenna altitude. Then, we developed an altimetry correction in terms of half of the rate of change of the delay correction with respect to the sine of elevation. We simulated observation scenarios with satellite elevation angles from zenith down to the minimum observable elevation on the spherical horizon (negative) and antenna altitudes from 10 m to 500 m. We noted that due to Earth’s curvature, the reflection point is displaced, brought closer in the x-axis and bent downward in the y-axis. The displacement of the reflection point increases the interferometric delay. Near the planar horizon, at zero elevation, the difference increases quickly and so does the altimetry correction. Finally, considering a 1-cm altimetry precision threshold to sea-level measurements, we observed that the altimetry correction for Earth’s curvature is needed at 10°, 20°, and 30° satellite elevation, for an antenna altitude of 60 m, 120 m, and 160 m, respectively.</p>


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


1992 ◽  
Vol 29 (11) ◽  
pp. 2418-2425 ◽  
Author(s):  
A. Mark Tushingham

Churchill, Manitoba, is located near the centre of postglacial uplift caused by the Earth's recovery from the melting of the Laurentide Ice Sheet. The value of present-day uplift at Churchill has important implications in the study of postglacial uplift in that it can aid in constraining the thickness of the ice sheet and the rheology of the Earth. The tide-gauge record at Churchill since 1940 is examined, along with nearby Holocene relative sea-level data, geodetic measurements, and recent absolute gravimetry measurements, and a present-day rate of uplift of 8–9 mm/a is estimated. Glacial isostatic adjustment models yield similar estimates for the rate of uplift at Churchill. The effects of the tide-gauge record of the diversion of the Churchill River during the mid-1970's are discussed.


1935 ◽  
Vol 72 (8) ◽  
pp. 377-380 ◽  
Author(s):  
P. R. Thompson

Consideration of the continental areas over which the sea spread at various times during the course of geological history leads to the impression that perhaps every part of the land surface of the earth was, at one time or another, raised from a position below sea-level. The present land surface seems to have grown around ancient nuclei owing to the compression of the granitic, sedimentary, and other rocks of which the continental layers are composed. At certain times the compressive forces acted so strongly upon these rocks that the average height of the land reached maximum values, which might have been as great as 3,000 feet. Then denudation, and perhaps other processes, coming into operation and persisting through ages of comparative quiescence, lowered the surface, sometimes to minimum average levels, which might have been as low as 500 feet. There have been a few comparatively short periods of exceptionally high relief, separated by longer periods of low relief. Assuming that the land was raised by horizontal compression, the diminution in surface area of the earth necessary to produce a change in level of 2,500 feet would be very considerable. Instead of considering the change from a minimum average height of 500 feet to a maximum of 3,000 feet, it may be more convenient in the first place to consider the elevation of, say, the continental layers of Dr. H. Jeffreys from sea-level to the average height of the present land surface, that is about 2,500 feet, or 762 metres. It will be supposed, then, that the continental layers, as they now exist, were developed from layers consisting of 1 km. of sediments of specific gravity 2·4, 10 km. of granite of specific gravity 2·6, and 20 km. of tachylyte of specific gravity 2·9, the whole resting on dunite of specific gravity 3·3.


2016 ◽  
Vol 34 (11) ◽  
pp. 961-974 ◽  
Author(s):  
Lukas Maes ◽  
Romain Maggiolo ◽  
Johan De Keyser

Abstract. The cold ions (energy less than several tens of electronvolts) flowing out from the polar ionosphere, called the polar wind, are an important source of plasma for the magnetosphere. The main source of energy driving the polar wind is solar illumination, which therefore has a large influence on the outflow. Observations have shown that solar illumination creates roughly two distinct regimes where the outflow from a sunlit ionosphere is higher than that from a dark one. The transition between both regimes is at a solar zenith angle larger than 90°. The rotation of the Earth and its orbit around the Sun causes the magnetic polar cap to move into and out of the sunlight. In this paper we use a simple set-up to study qualitatively the effects of these variations in solar illumination of the polar cap on the ion flux from the whole polar cap. We find that this flux exhibits diurnal and seasonal variations even when combining the flux from both hemispheres. In addition there are asymmetries between the outflows from the Northern Hemisphere and the Southern Hemisphere.


2016 ◽  
Vol 12 (4) ◽  
pp. 911-921 ◽  
Author(s):  
André Düsterhus ◽  
Alessio Rovere ◽  
Anders E. Carlson ◽  
Benjamin P. Horton ◽  
Volker Klemann ◽  
...  

Abstract. Sea-level and ice-sheet databases have driven numerous advances in understanding the Earth system. We describe the challenges and offer best strategies that can be adopted to build self-consistent and standardised databases of geological and geochemical information used to archive palaeo-sea-levels and palaeo-ice-sheets. There are three phases in the development of a database: (i) measurement, (ii) interpretation, and (iii) database creation. Measurement should include the objective description of the position and age of a sample, description of associated geological features, and quantification of uncertainties. Interpretation of the sample may have a subjective component, but it should always include uncertainties and alternative or contrasting interpretations, with any exclusion of existing interpretations requiring a full justification. During the creation of a database, an approach based on accessibility, transparency, trust, availability, continuity, completeness, and communication of content (ATTAC3) must be adopted. It is essential to consider the community that creates and benefits from a database. We conclude that funding agencies should not only consider the creation of original data in specific research-question-oriented projects, but also include the possibility of using part of the funding for IT-related and database creation tasks, which are essential to guarantee accessibility and maintenance of the collected data.


2019 ◽  
Vol 55 (1) ◽  
pp. 260
Author(s):  
Constantinos Perisoratis

The climate changes are necessarily related to the increase of the Earth’s temperature, resulting in a sea level rise. Such continuous events, were taking place with minor and greater intensity, during the alternation of warm and cool periods in the Earth during the Late Quaternary and the Holocene periods. However, a particularly significant awareness has taken place in the scientific community, and consequently in the greater public, in the last decades: that a climatic change will take place soon, or it is on-going, and that therefore it is important to undertake drastic actions. However, such a climatic change has not been recorded yet, and hence the necessary actions are not required, for the time being.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaoli Bai ◽  
John L. Junkins

The halo orbits around the Earth-MoonL2libration point provide a great candidate orbit for a lunar communication satellite, where the satellite remains above the horizon on the far side of the Moon being visible from the Earth at all times. Such orbits are generally unstable, and station-keeping strategies are required to control the satellite to remain close to the reference orbit. A recently developed Modified Chebyshev-Picard Iteration method is used to compute corrective maneuvers at discrete time intervals for station-keeping of halo orbit satellite, and several key parameters affecting the mission performance are analyzed through numerical simulations. Compared with previously published results, the presented method provides a computationally efficient station-keeping approach which has a simple control structure that does not require weight turning and, most importantly, does not need state transition matrix or gradient information computation. The performance of the presented approach is shown to be comparable with published methods.


1972 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
R. I. Walcott

Vertical movements of the earth's surface related to postglacial rebound, the eustatic rise in sea level and the elastic deformation of the globe due to melting of late glacial ice sheets are calculated for simplified models of the earth. The movements of the ground are large and require a reevaluation of what is meant by eustatic sea level change. This is defined here as an ocean-wide average change in mean sea level and its measurement requires widely distributed observations weighted according to the areas of oceans they represent. Evidence of a postglacial (6000-0 years BP) relative rise in sea level comes largely from regions affected by ground subsidence related to adjacent upward postglacial rebound movements in deglaciated areas: evidence for a relative fall of sea level comes from coastlines well removed from areas of rebound and which have been affected by a rise of the continental areas through compensation for the eustatic load. It is concluded: (1) no substantial eustatic change of sea level in the past 6,000 years is required to explain postglacial sea levels: (2) in late glacial time the eustatic curve is probably more like the sea level curve of Texas and Mexico than that of the Atlantic seaboard of the United States: (3) that the information of past sea levels, when sufficiently widespread, can provide an important method of studying the deep mechanical structure of the earth.


Sign in / Sign up

Export Citation Format

Share Document