scholarly journals Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry

2013 ◽  
Vol 6 (1) ◽  
pp. 381-422 ◽  
Author(s):  
T. D. Thornberry ◽  
A. W. Rollins ◽  
R. S. Gao ◽  
L. A. Watts ◽  
S. J. Ciciora ◽  
...  

Abstract. A chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O) at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS). A low-pressure flow of sample air passes through an ionization volume containing an α-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+) from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm) generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57 high altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1-s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm−1 at 3 ppm with a signal to noise ratio (2σ, 1-s) greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

2013 ◽  
Vol 6 (6) ◽  
pp. 1461-1475 ◽  
Author(s):  
T. D. Thornberry ◽  
A. W. Rollins ◽  
R. S. Gao ◽  
L. A. Watts ◽  
S. J. Ciciora ◽  
...  

Abstract. A chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O) at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS). A low-pressure flow of sample air passes through an ionization volume containing an α-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+) from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm, 10−6 mol mol−1) generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57F high-altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1 s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm−1 at 3 ppm with a signal to noise ratio (2 σ, 1 s) greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.


2018 ◽  
Author(s):  
Sascha R. Albrecht ◽  
Anna Novelli ◽  
Andreas Hofzumahaus ◽  
Sungah Kang ◽  
Yare Baker ◽  
...  

Abstract. Hydroxyl and hydroperoxy radicals are key species for the understanding of atmospheric oxidation processes. Their measurement is challenging due to their high reactivity, therefore very sensitive detection methods are needed. Within this study, the measurement of hydroperoxy radicals (HO2) using chemical ionization combined with an high resolution time of flight mass spectrometer (Aerodyne Research Inc.) employing bromide as primary ion is presented. The 1σ limit of detection of 4.5 × 107 molecules cm−3 for a 60 s measurement is below typical HO2 concentrations found in the atmosphere. The detection sensitivity of the instrument is affected by the presence of water vapor. Therefore, a water vapor dependent calibration factor that decreases approximately by a factor of 2 if the water vapor mixing ratio increases from 0.1 to 1.0 % needs to be applied. An instrumental background most likely generated by the ion source that is equivalent to a HO2 concentration of 1.5 ± 0.2 × 108 molecules cm−3 is subtracted to derive atmospheric HO2 concentrations. This background can be determined by overflowing the inlet with zero air. Several experiments were performed in the atmospheric simulation chamber SAPHIR at the Forschungszentrum Jülich to test the instrument performance by comparison to the well-established laser-induced fluorescence (LIF) technique for measurements of HO2. A high linear correlation coefficient of R2 = 0.87 is achieved. The slope of the linear regression of 1.07 demonstrates the good absolute agreement of both measurements. Chemical conditions during 15 experiments allowed testing the instrument’s behavior in the presence of atmospheric concentrations of H2O, NOx and O3. No significant interferences from these species were observed. All these facts are demonstrating a reliable measurement of HO2 by the chemical ionization mass spectrometer presented.


2010 ◽  
Vol 27 (2) ◽  
pp. 274-289 ◽  
Author(s):  
Le Van Thien ◽  
William A. Gallus ◽  
Mark A. Olsen ◽  
Nathaniel Livesey

Abstract Water vapor mixing ratios in the upper troposphere and lower stratosphere measured by the Aura Microwave Limb Sounder (MLS) version 2.2 instrument have been compared with Global Forecast System (GFS) analyses at five levels within the 300–100-hPa layer and North American Mesoscale (NAM) model analyses at six levels within the 300–50-hPa layer over the two years of 2005 and 2006 at four analysis times (e.g., 0000, 0600, 1200, and 1800 UTC). Probability density functions of the vapor mixing ratios suggest that both analyses are often moister than Aura MLS values, but NAM model analyses agree somewhat better with Aura MLS measurements than GFS model analyses over the same North American domain at the five common levels. Examining five subsets of the global GFS domain, the GFS model analysis is moister than Aura MLS estimates everywhere but at 150 and 100 hPa in all regions outside of the tropics. NAM model analysis water vapor mixing ratios exceeded the Aura MLS values at all levels from 250 to 150 hPa in all four seasons of both years and some seasons at 100 and 50 hPa. Moist biases in winter and spring of both years were similar at all levels, but these moist biases in summer and fall were smaller in 2005 than in 2006 at all levels. These differences may be due to the change in the NAM from using the Eta Model to using the Weather Research and Forecasting model (WRF) in June 2006.


2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.


2016 ◽  
Author(s):  
M. Venkat Ratnam ◽  
S. Ravindra Babu ◽  
S. S. Das ◽  
Ghouse Basha ◽  
B. V. Krishnamurthy ◽  
...  

Abstract. Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) process in the Upper Troposphere and Lower Stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the North Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) Radio Occultation (RO) measurements and ozone and water vapor concentrations in UTLS region are obtained from Aura-Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km from the centre of cyclone. In our earlier study we have observed decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K) and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within the 500 km from the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from cyclone centre whereas the enhancement in the water vapor in the lower stratosphere is more significant on south-east side extending from 500–1000 km away from the cyclone centre. We estimated the cross-tropopause mass flux for different intensities of cyclones and found that the mean flux from stratosphere to troposphere for cyclonic stroms is 0.05 ± 0.29 × 10−3 kg m−2 and for very severe cyclonic stroms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed in the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget and consequentially the STE in the UTLS region.


1974 ◽  
Vol 52 (8) ◽  
pp. 1527-1531 ◽  
Author(s):  
H. J. Mastenbrook

Nearly 10 years of water-vapor measurements to heights of 30 km provide a basis for assessing the natural concentration of stratospheric water vapor and its variability. The measurements which began in 1964 have been made at monthly intervals from the mid-latitude location of Washington, D.C, using a balloon-borne frost-point hygrometer. The observations show the mixing ratio of water-vapor mass to air mass in the stratosphere to be in the general range of 1 to 4 p.p.m. with a modal concentration between 2 and 3 p.p.m. An annual cycle of mixing ratio is evident for the low stratosphere. A trend of water-vapor increase observed during the first 6 years does not persist beyond 1969 or 1970. The 6 year increase was followed by a marked decrease in 1971, with mixing ratios remaining generally below 3 p.p.m. thereafter. The measurements of recent years suggest that the series of observations may have begun during a period of low water-vapor concentration in the stratosphere.


2011 ◽  
Vol 4 (5) ◽  
pp. 933-954 ◽  
Author(s):  
A. Rozanov ◽  
K. Weigel ◽  
H. Bovensmann ◽  
S. Dhomse ◽  
K.-U. Eichmann ◽  
...  

Abstract. This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS) altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) aboard ENVISAT (Environmental Satellite) are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.


2009 ◽  
Vol 137 (8) ◽  
pp. 2493-2514 ◽  
Author(s):  
Charles Chemel ◽  
Maria R. Russo ◽  
John A. Pyle ◽  
Ranjeet S. Sokhi ◽  
Cornelius Schiller

Abstract The development of a severe Hector thunderstorm that formed over the Tiwi Islands, north of Australia, during the Aerosol and Chemical Transport in Tropical Convection/Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere (ACTIVE/SCOUT-O3) field campaign in late 2005, is simulated by the Advanced Research Weather Research and Forecasting (ARW) model and the Met Office Unified Model (UM). The general aim of this paper is to investigate the role of isolated deep convection over the tropics in regulating the water content in the upper troposphere/lower stratosphere (UT/LS). Using a horizontal resolution as fine as 1 km, the numerical simulations reproduce the timing, structure, and strength of Hector fairly well when compared with field campaign observations. The sensitivity of results from ARW to horizontal resolution is investigated by running the model in a large-eddy simulation mode with a horizontal resolution of 250 m. While refining the horizontal resolution to 250 m leads to a better representation of convection with respect to rainfall, the characteristics of the Hector thunderstorm are basically similar in space and time to those obtained in the 1-km-horizontal-resolution simulations. Several overshooting updrafts penetrating the tropopause are produced in the simulations during the mature stage of Hector. The penetration of rising towering cumulus clouds into the LS maintains the entrainment of air at the interface between the UT and the LS. Vertical exchanges resulting from this entrainment process have a significant impact on the redistribution of atmospheric constituents within the UT/LS region at the scale of the islands. In particular, a large amount of water is injected in the LS. The fate of the ice particles as Hector develops drives the water vapor mixing ratio to saturation by sublimation of the injected ice particles, moistening the air in the LS. The moistening was found to be fairly significant above 380 K and averaged about 0.06 ppmv in the range 380–420 K for ARW. As for UM, the moistening was found to be much larger (about 2.24 ppmv in the range of 380–420 K) than for ARW. This result confirms that convective transport can play an important role in regulating the water vapor mixing ratio in the LS.


Sign in / Sign up

Export Citation Format

Share Document