Management and dissemination of global high-resolution agro-hydrological model simulation data from the Virtual Water Values project

Author(s):  
Wolfgang Kurtz ◽  
Stephan Hachinger ◽  
Anton Frank ◽  
Wolfram Mauser ◽  
Jens Weismüller ◽  
...  

<p>The ViWA (Virtual Water Values) project aims to provide a global-scale assessment of the current usage of water resources, of the efficiency of water use and of agricultural yields as well as the flow and trade of ‘virtual’ water across country boundaries. This is achieved by establishing a global management and monitoring system which combines high-resolution (1 km<sup>2</sup>) agro-hydrological model simulations with information from high-resolution remote-sensing data from Copernicus satellites. The monitoring system is used to judge the progress in achieving water-related UN sustainable development goals on the local and global scale. Specific goals of the project are, for example, to:</p><ul><li>evaluate possible inefficiencies of the current water use in agriculture, industry and water management and its economic consequences.</li> <li>assess the vulnerability of agriculture and ecosystems to climate variability with a special emphasis on water availability.</li> <li>identify regional hot-spots of unsustainable water use and to analyze possible institutional obstacles for a sustainable and efficient water use.</li> <li>identify trade-offs between the commercial water use and protection of ecosystem services.</li> </ul><p>A cornerstone for reaching these project goals are high-resolution global ensemble simulations with an agro-hydrological model for a variety of crop types and management practices. These simulations provide the relevant information on agricultural yields and water demands at different scales. In this context, a considerable amount of data is generated and subsets of these data might also be of direct relevance for different external interest groups.</p><p>In this presentation, we describe our approach for managing the simulation data, with a special focus on possible strategies for data provisioning to interested stakeholders, scientists, practitioners and the general public. We will give an overview on the corresponding simulation and data storage workflows on the utilized HPC-systems and we will discuss methods for providing the data to the different interest groups. Among other aspects, we address findability (in the sense of the FAIR principles) of simulation results for the scienctific community in indexed search portals through a proper metadata annotation. We also discuss a prototypical interactive web portal for visualizing, subsetting and downloading of selected parts of the data set.</p>

2014 ◽  
Vol 18 (6) ◽  
pp. 2103-2111 ◽  
Author(s):  
L. J. Zhang ◽  
X. A. Yin ◽  
Y. Zhi ◽  
Z. F. Yang

Abstract. China is a water-stressed country, and agriculture consumes the bulk of its water resources. Assessing the virtual water content (VWC) of crops is one important way to develop efficient water management measures to alleviate water resource conflicts among different sectors. In this research, the VWC of rice, a major crop in China, is taken as the research object. China covers a vast land area, and the VWC of rice varies widely between different regions. The VWC of rice in China is assessed and the spatial characteristics are also analysed. The total VWC is the total volume of freshwater both consumed and affected by pollution during the crop production process, including both direct and indirect water use. Prior calculation frameworks of the VWC of crops did not contain all of the virtual water content of crops. In addition to the calculation of green, blue and grey water – the direct water in VWC – the indirect water use of rice was also calculated, using an input–output model. The percentages of direct green, blue, grey and indirect water in the total VWC of rice in China were found to be 43.8, 28.2, 27.6, and 0.4%. The total VWC of rice generally showed a roughly three-tiered distribution, and decreased from southeast to northwest. The higher values of direct green water usage were mainly concentrated in Southeast and Southwest China, while the values were relatively low in Northwest China and Inner Mongolia. The higher direct blue water values were mainly concentrated in the eastern and southern coastal regions and Northwest China, and low values were mainly concentrated in Southwest China. Grey water values were relatively high in Shanxi and Guangxi provinces and low in Northeast and Northwest China. The regions with high values for indirect water were randomly distributed but the regions with low values were mainly concentrated in Northwest and Southwest China. For the regions with relatively high total VWC the high values of blue water made the largest contribution, although for the country as a whole the direct green water is the most important contributor.


2014 ◽  
Vol 18 (9) ◽  
pp. 3511-3538 ◽  
Author(s):  
H. Müller Schmied ◽  
S. Eisner ◽  
D. Franz ◽  
M. Wattenbach ◽  
F. T. Portmann ◽  
...  

Abstract. Global-scale assessments of freshwater fluxes and storages by hydrological models under historic climate conditions are subject to a variety of uncertainties. Using the global hydrological model WaterGAP (Water – Global Assessment and Prognosis) 2.2, we investigated the sensitivity of simulated freshwater fluxes and water storage variations to five major sources of uncertainty: climate forcing, land cover input, model structure/refinements, consideration of human water use and calibration (or no calibration) against observed mean river discharge. In a modeling experiment, five variants of the standard version of WaterGAP 2.2 were generated that differed from the standard version only regarding the investigated source of uncertainty. The basin-specific calibration approach for WaterGAP was found to have the largest effect on grid cell fluxes as well as on global AET (actual evapotranspiration) and discharge into oceans for the period 1971–2000. Regarding grid cell fluxes, climate forcing ranks second before land cover input. Global water storage trends are most sensitive to model refinements (mainly modeling of groundwater depletion) and consideration of human water use. The best fit to observed time series of monthly river discharge or discharge seasonality is obtained with the standard WaterGAP 2.2 model version which is calibrated and driven by daily reanalysis-based WFD/WFDEI (combination of Watch Forcing Data based on ERA40 and Watch Forcing Data based on ERA-Interim) climate data. Discharge computed by a calibrated model version using monthly CRU TS (Climate Research Unit time-series) 3.2 and GPCC (Global Precipitation Climatology Center) v6 climate input reduced the fit to observed discharge for most stations. Taking into account uncertainties of climate and land cover data, global 1971–2000 discharge into oceans and inland sinks ranges between 40 000 and 42 000 km3 yr−1. Global actual evapotranspiration, with 70 000 km3 yr−1, is rather unaffected by climate and land cover uncertainties. Human water use reduced river discharge by 1000 km3 yr−1, such that global renewable water resources are estimated to range between 41 000 and 43 000 km3 yr−1. The climate data sets WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with respect to shortwave radiation data, resulting in strongly different actual evapotranspiration. Global assessments of freshwater fluxes and storages would therefore benefit from the development of a global data set of consistent daily climate forcing from 1900 to present.


2021 ◽  
Vol 13 (5) ◽  
pp. 954
Author(s):  
Abhilash K. Chandel ◽  
Lav R. Khot ◽  
Behnaz Molaei ◽  
R. Troy Peters ◽  
Claudio O. Stöckle ◽  
...  

Site-specific irrigation management for perennial crops such as grape requires water use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system (UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with internalized calibration (METRIC) energy balance model to map water use (UASM-ET approach) of a commercial, surface, and direct-root-zone (DRZ) drip-irrigated vineyard. Four irrigation treatments, 100%, 80%, 60%, and 40%, of commercial rate (CR) were also applied, with the CR estimated using soil moisture data and a non-stressed average crop coefficient of 0.5. Fourteen campaigns were conducted in the 2018 and 2019 seasons to collect multispectral (ground sampling distance (GSD): 7 cm/pixel) and thermal imaging (GSD: 13 cm/pixel) data. Six of those campaigns were near Landsat 7/8 satellite overpass of the field site. Weather inputs were obtained from a nearby WSU-AgWeatherNet station (1 km). First, UASM-ET estimates were compared to those derived from soil water balance (SWB) and conventional Landsat-METRIC (LM) approaches. Overall, UASM-ET (2.70 ± 1.03 mm day−1 [mean ± std. dev.]) was higher than SWB-ET (1.80 ± 0.98 mm day−1). However, both estimates had a significant linear correlation (r = 0.64–0.81, p < 0.01). For the days of satellite overpass, UASM-ET was statistically similar to LM-ET, with mean absolute normalized ET departures (ETd,MAN) of 4.30% and a mean r of 0.83 (p < 0.01). The study also extracted spatial canopy transpiration (UASM-T) maps by segmenting the soil background from the UASM-ET, which had strong correlation with the estimates derived by the standard basal crop coefficient approach (Td,MAN = 14%, r = 0.95, p < 0.01). The UASM-T maps were then used to quantify water use differences in the DRZ-irrigated grapevines. Canopy transpiration (T) was statistically significant among the irrigation treatments and was highest for grapevines irrigated at 100% or 80% of the CR, followed by 60% and 40% of the CR (p < 0.01). Reference T fraction (TrF) curves established from the UASM-T maps showed a notable effect of irrigation treatment rates. The total water use of grapevines estimated using interpolated TrF curves was highest for treatments of 100% (425 and 320 mm for the 2018 and 2019 seasons, respectively), followed by 80% (420 and 317 mm), 60% (391 and 318 mm), and 40% (370 and 304 mm) of the CR. Such estimates were within 5% to 11% of the SWB-based water use calculations. The UASM-T-estimated water use was not the same as the actual amount of water applied in the two seasons, probably because DRZ-irrigated vines might have developed deeper or lateral roots to fulfill water requirements outside the irrigated soil volume. Overall, results highlight the usefulness of high-resolution imagery toward site-specific water use management of grapevines.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 748
Author(s):  
Ming Li ◽  
Qingsong Tian ◽  
Yan Yu ◽  
Yueyan Xu ◽  
Chongguang Li

The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rumana Asad ◽  
Iftekhar Ahmed ◽  
Josephine Vaughan ◽  
Jason von Meding

Purpose Urban flooding in developing countries of the Global South is growing due to extreme rainfall and sea-level rise induced by climate change, as well as the proliferation of impervious, built-up areas resulting from unplanned urbanisation and development. Continuous loss of traditional knowledge related to local water management practices, and the de-valuing of such knowledge that goes hand-in-hand with globalised aspirations, is inhibiting flood resilience efforts. This paper aims to address the need to include traditional water knowledge (TWK) in urban living and development processes in the Global South. Design/methodology/approach This paper commences with a review of existing frameworks that focus on natural resource management, critically assessing two existing frameworks of traditional ecological knowledge (TEK). The assessment of the existing approaches contributes to this paper’s development of a novel framework to promote TWK with regard to resilience and risk reduction, specifically for developing flood adaptive strategies, which is the second stage of this paper. Finally, the paper explains how the framework can contribute to the field of urban design and planning using examples from the literature to demonstrate challenges and opportunities related to the adaptation of such a framework. Findings The framework developed in this paper reveals three proposed vertices of TWK, named as place-based landscape knowledge, water use and management and water values. This framework has the potential to produce context-specific knowledge that can contribute to flood-resilient built-environment through urban design and practices. Research limitations/implications The framework developed in this paper reveals three proposed vertices of TWK, named place-based landscape knowledge, water use and management and water values. This framework has the potential to produce context-specific knowledge that can contribute to flood-resilient built-environment through urban design and practices. Originality/value Within the field of TEK research, very few researchers have explored the field of developing flood resilience in an urban context. The proposed TWK framework presented in this paper will help to fill that gap.


2021 ◽  
Author(s):  
Elena De Petrillo ◽  
Marta Tuninetti ◽  
Francesco Laio

&lt;p&gt;Through the international trade of agricultural goods, water resources that are physically used in the country of production are virtually transferred to the country of consumption. Food trade leads to a global redistribution of freshwater resources, thus shaping distant interdependencies among countries. Recent studies have shown how agricultural trade drives an outsourcing of environmental impacts pertaining to depletion and pollution of freshwater resources, and eutrophication of river bodies in distant producer countries. What is less clear is how the final consumer &amp;#8211; being an individual, a company, or a community- impacts the water resources of producer countries at a subnational scale. Indeed, the variability of sub-national water footprint (WF in m&lt;sup&gt;3&lt;/sup&gt;/tonne) due to climate, soil properties, irrigation practices, and fertilizer inputs is generally lost in trade analyses, as most trade data are only available at the country scale. The latest version of the Spatially Explicit Information on Production to Consumption Systems model&amp;#160; (SEI-PCS) by Trase provides detailed data on single trade flows (in tonne) along the crop supply chain: from local municipalities- to exporter companies- to importer companies &amp;#8211; to the final consumer countries. These data allow us to capitalize on the high-resolution data of agricultural WF available in the literature, in order to quantify the sub-national virtual water flows behind food trade. As a first step, we assess the detailed soybean trade between Brazil and Italy. This assessment is relevant for water management because the global soybean flow reaching Italy may be traced back to 374 municipalities with heterogeneous agricultural practises and water use efficiency. Results show that the largest flow of virtual water from a Brazilian municipality to Italy -3.52e+07 m&lt;sup&gt;3&lt;/sup&gt; (3% of the total export flow)- comes from Sorriso in the State of Mato Grosso. Conversely, the highest flow of blue water -1.56e+05 m&lt;sup&gt;3&lt;/sup&gt;- comes from Jaguar&amp;#227;o, in the State of Rio Grande do Sul, located in the Brazilian Pampa. Further, the analysis at the company scale reveals that as many as 37 exporting companies can be identified exchanging to Italy; &amp;#160;Bianchini S.A is the largest virtual water trader (1.88 e+08 m&lt;sup&gt;3&lt;/sup&gt; of green water and 3,92 e+06 m&lt;sup&gt;3&lt;/sup&gt; of blue water), followed by COFCO (1,06 e+08 m&lt;sup&gt;3&lt;/sup&gt; of green water and 6.62 m&lt;sup&gt;3&lt;/sup&gt; of blue water) &amp;#160;and Cargill ( 6.96 e+07 m&lt;sup&gt;3&lt;/sup&gt; of green water and 2.80 e+02 m&lt;sup&gt;3&lt;/sup&gt; of blue water). By building the bipartite network of importing companies and municipalities originating the fluxes we are able to efficiently disaggregate the supply chains , providing novel tools to build sustainable water management strategies.&lt;/p&gt;


2018 ◽  
Vol 22 (5) ◽  
pp. 3007-3032 ◽  
Author(s):  
Richard R. Rushforth ◽  
Benjamin L. Ruddell

Abstract. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (FCUMed′) of the US is 589 m3 per capita (FWithdrawal′: 1298 m3 per capita; FCUMax′: 720 m3 per capita; FCUMin′: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.


Sign in / Sign up

Export Citation Format

Share Document