Daily streamflow prediction using an LSTM neural network in Alpine catchments

Author(s):  
Mohit Anand ◽  
Peter Molnar ◽  
Nadav Peleg

<p>Prediction of rainfall-runoff response in Alpine catchments is complex because hydrological processes vary strongly in space and time, they are elevation and temperature dependent, subsurface water stores are heterogeneous, snow plays an important role, and runoff response is fast. As a result, the transformation of rainfall into runoff is highly nonlinear. Machine Learning (ML) methods are suitable for reproducing such nonlinearities between input and output data and have been used for streamflow prediction. Recurrent Neural Networks (RNNs) with memory states, such as Long and Short-Term Memory (LSTM) models, are particularly suitable for hydrological variables that are dependent in time. An example of a recent application of LSTM to the rainfall-runoff transformation in many catchments in the USA showed that the LSTM model can learn physically meaningful catchment embeddings from precipitation-temperature-streamflow data, and performs comparably to widely used conceptual hydrological models (Kratzert et al., 2019).</p><p>In this study, we tested the LSTM approach on high-quality daily data from 23 Alpine catchments in Switzerland with three goals in mind. First, the LSTM model was trained and validated using daily climate variables (precipitation, air temperature, sunshine duration) and streamflow data on all catchments individually and the performance was compared to a distributed hydrological model (PREVAH). The performance of the LSTM model was in many (but not in all) cases better than the hydrological model. Second, a single LSTM model was trained in all catchments simultaneously, embedding terrain attributes extracted from the Digital Elevation Model (DEM). In this way differences between catchments related to the elevation and temperature dependent hydrological processes, such as snow accumulation and melt, evapotranspiration, runoff generation, etc., can be captured. We show the performance of this model and evaluate the regionalization potential provided by it. Third, the LSTM model was applied in an ensemble forecasting context, and we discuss the benefits and limitations this application brings compared to forecasting with a process-based hydrological model.</p>

2013 ◽  
Vol 10 (12) ◽  
pp. 15375-15408 ◽  
Author(s):  
O. Munyaneza ◽  
A. Mukubwa ◽  
S. Maskey ◽  
J. Wenninger ◽  
S. Uhlenbrook

Abstract. In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash–Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions, if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the Migina catchment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Feng Wang ◽  
Guohe Huang ◽  
Yongping Li ◽  
Jinliang Xu ◽  
Guoqing Wang ◽  
...  

Streamflow prediction is one of the most important topics in operational hydrology. The responses of runoffs are different among watersheds due to the diversity of climatic conditions as well as watershed characteristics. In this study, a stepwise cluster analysis hydrological (SCAH) model is developed to reveal the nonlinear and dynamic rainfall-runoff relationship. The proposed approach is applied to predict the runoffs with regional climatic conditions in Yichang station, Hankou station, and Datong station over the Yangtze River Watershed, China. The main conclusions are: 1) the performances of SCAH in both deterministic and probabilistic modeling are notable.; 2) the SCAH is insensitive to the parameter p in SCAH with robust cluster-tree structure; 3) in terms of the case study in the Yangtze River watershed, it can be inferred that the water resource in the lower reaches of the Yangtze River is seriously affected by incoming water from the upper reaches according to the strong correlations. This study has indicated that the developed statistical hydrological model SCAH approach can characterize such hydrological processes complicated with nonlinear and dynamic relationships, and provide satisfactory predictions. Flexible data requirements, quick calibration, and reliable performances make SCAH an appealing tool in revealing rainfall-runoff relationships.


2017 ◽  
Author(s):  
Alessio Pugliese ◽  
Simone Persiano ◽  
Stefano Bagli ◽  
Paolo Mazzoli ◽  
Juraj Parajka ◽  
...  

Abstract. Our study develops and tests a geostatistical technique for locally enhancing macro-scale rainfall-runoff simulations on the basis of observed streamflow data that were not used in calibration. We consider Tyrol (Austria and Italy) and two different types of daily streamflow data: macro-scale rainfall-runoff simulations at 11 prediction nodes and observations at 46 gauged catchments. The technique consists of three main steps: (1) period-of-record flow-duration curves (FDCs) are geostatistically predicted at target ungauged basins, for which macro-scale model runs are available; (2) residuals between geostatistically predicted FDCs and FDCs constructed from simulated streamflow series are computed; (3) the relationship between duration and residuals is used for enhancing simulated time series at target basins. We apply the technique in cross-validation to 11 gauged catchments, for which simulated and observed streamflow series are available over the period 1980–2010. Our results show that (1) the procedure can significantly enhance macro-scale simulations (regional NSE increases from nearly zero to ≈ 0.7) and (2) improvements are significant for low gauging network densities (i.e. 1 gauge per 2000 km2).


2018 ◽  
Vol 22 (9) ◽  
pp. 4633-4648 ◽  
Author(s):  
Alessio Pugliese ◽  
Simone Persiano ◽  
Stefano Bagli ◽  
Paolo Mazzoli ◽  
Juraj Parajka ◽  
...  

Abstract. Our study develops and tests a geostatistical technique for locally enhancing macro-scale rainfall–runoff simulations on the basis of observed streamflow data that were not used in calibration. We consider Tyrol (Austria and Italy) and two different types of daily streamflow data: macro-scale rainfall–runoff simulations at 11 prediction nodes and observations at 46 gauged catchments. The technique consists of three main steps: (1) period-of-record flow–duration curves (FDCs) are geostatistically predicted at target ungauged basins, for which macro-scale model runs are available; (2) residuals between geostatistically predicted FDCs and FDCs constructed from simulated streamflow series are computed; (3) the relationship between duration and residuals is used for enhancing simulated time series at target basins. We apply the technique in cross-validation to 11 gauged catchments, for which simulated and observed streamflow series are available over the period 1980–2010. Our results show that (1) the procedure can significantly enhance macro-scale simulations (regional LNSE increases from nearly zero to ≈0.7) and (2) improvements are significant for low gauging network densities (i.e. 1 gauge per 2000 km2).


2020 ◽  
Author(s):  
Vladan Babovic ◽  
Jayashree Chadalawada ◽  
Herath Mudiyanselage Viraj Vidura Herath

<p>Modelling of rainfall-runoff phenomenon continues to be a challenging task at hand of hydrologists as the underlying processes are highly nonlinear, dynamic and interdependent. Numerous modelling strategies like empirical, conceptual, physically based, data driven, are used to develop rainfall-runoff models as no model type can be considered to be universally pertinent for a wide range of problems. Latest literature review emphasizes that the crucial step of hydrological model selection is often subjective and is based on legacy. As the research outcome depends on model choice, there is a necessity to automate the process of model evolution, evaluation and selection based on research objectives, temporal and spatial characteristics of available data and catchment properties. Therefore, this study proposes a novel automated model building algorithm relying on machine learning technique Genetic Programming (GP).</p><p>State of art GP applications in rainfall-runoff modelling as yet used the algorithm as a short-term forecasting tool which produces an expected future time series very much alike to neural networks application. Such simplistic applications of data driven black-box machine learning techniques may lead to development of accurate yet meaningless models which do not satisfy basic hydrological insights and may have severe difficulties with interpretation. Concurrently, it should be admitted that there is a vast amount of knowledge and understanding of physical processes that should not just be thrown away. Thus, we strongly believe that the most suitable way forward is to couple the already existing body of knowledge with machine learning techniques in a guided manner to enhance the meaningfulness and interpretability of the induced models.</p><p>In this suggested algorithm the domain knowledge is introduced through the incorporation of process knowledge by adding model building blocks from prevailing rainfall-runoff modelling frameworks into the GP function set. Presently, the function set library consists with Sugawara TANK model functions, generic components of two flexible rainfall-runoff modelling frameworks (FUSE and SUPERFLEX) and model equations of 46 existing hydrological models (MARRMoT). Nevertheless, perhaps more importantly, the algorithm is readily integratable with any other internal coherence building blocks. This approach contrasts from rest of machine learning applications in rainfall-runoff modelling as it not only produces the runoff predictions but develops a physically meaningful hydrological model which helps the hydrologist to better understand the catchment dynamics. The proposed algorithm considers the model space and automatically identifies the appropriate model configurations for a catchment of interest by optimizing user-defined learning objectives in a multi-objective optimization framework. The model induction capabilities of the proposed algorithm have been evaluated on the Blackwater River basin, Alabama, United States. The model configurations evolved through the model-building algorithm are compatible with the fieldwork investigations and previously reported research findings.</p>


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Ahmed Naseh Ahmed Hamdan ◽  
Suhad Almuktar ◽  
Miklas Scholz

It has become necessary to estimate the quantities of runoff by knowing the amount of rainfall to calculate the required quantities of water storage in reservoirs and to determine the likelihood of flooding. The present study deals with the development of a hydrological model named Hydrologic Engineering Center (HEC-HMS), which uses Digital Elevation Models (DEM). This hydrological model was used by means of the Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) and Geographical Information Systems (GIS) to identify the discharge of the Al-Adhaim River catchment and embankment dam in Iraq by simulated rainfall-runoff processes. The meteorological models were developed within the HEC-HMS from the recorded daily rainfall data for the hydrological years 2015 to 2018. The control specifications were defined for the specified period and one day time step. The Soil Conservation Service-Curve number (SCS-CN), SCS Unit Hydrograph and Muskingum methods were used for loss, transformation and routing calculations, respectively. The model was simulated for two years for calibration and one year for verification of the daily rainfall values. The results showed that both observed and simulated hydrographs were highly correlated. The model’s performance was evaluated by using a coefficient of determination of 90% for calibration and verification. The dam’s discharge for the considered period was successfully simulated but slightly overestimated. The results indicated that the model is suitable for hydrological simulations in the Al-Adhaim river catchment.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 872
Author(s):  
Vesna Đukić ◽  
Ranka Erić

Due to the improvement of computation power, in recent decades considerable progress has been made in the development of complex hydrological models. On the other hand, simple conceptual models have also been advanced. Previous studies on rainfall–runoff models have shown that model performance depends very much on the model structure. The purpose of this study is to determine whether the use of a complex hydrological model leads to more accurate results or not and to analyze whether some model structures are more efficient than others. Different configurations of the two models of different complexity, the Système Hydrologique Européen TRANsport (SHETRAN) and Hydrologic Modeling System (HEC-HMS), were compared and evaluated in simulating flash flood runoff for the small (75.9 km2) Jičinka River catchment in the Czech Republic. The two models were compared with respect to runoff simulations at the catchment outlet and soil moisture simulations within the catchment. The results indicate that the more complex SHETRAN model outperforms the simpler HEC HMS model in case of runoff, but not for soil moisture. It can be concluded that the models with higher complexity do not necessarily provide better model performance, and that the reliability of hydrological model simulations can vary depending on the hydrological variable under consideration.


2010 ◽  
Vol 14 (11) ◽  
pp. 2193-2205 ◽  
Author(s):  
J. L. Peña-Arancibia ◽  
A. I. J. M. van Dijk ◽  
M. Mulligan ◽  
L. A. Bruijnzeel

Abstract. The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m3 s–1) from the Global River Discharge Center (GRDC) and a linear reservoir model were used to obtain baseflow recession coefficients (kbf) for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR) and aridity index (AI) were found to explain 49% of the spatial variation of kbf. The rest of climatic indices and the terrain indices average catchment slope (SLO) and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE), a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for kbf parameterisation in ungauged catchments.


Sign in / Sign up

Export Citation Format

Share Document