Swelling clayey soils promote slope instability in the Muhunguzi watershed, western Burundi

Author(s):  
Bruno Delvaux ◽  
Clairia Kankurize ◽  
Gervais Rufyikiri

<p>In Burundi, landslides are frequent on the western slope of the Congo-Nile ridge. Unfortunately, they are poorly studied and understood despite their deadly consequences. Previous reports have suggested that slope steepness, lithology and clay soils expose this slope to landslides, while heavy and intense rainfall is a trigger. However, the role of soil in the vulnerability of this specific slope to landslides is unknown. Here we investigate on soil characteristics involved in land sliding in this area.</p><p>We selected and sampled black and red soils in two Muhunguzi landslides. We determined the soil plasticity from Atterberg limits as well as the particle size distribution. In addition, we measured the soil weathering stage, and further identified the clay minerals from measuring the cation exchange capacity of the clay fraction and analyzing clay samples with X-ray diffraction (XRD).</p><p>Both the black and red soils are moderately weathered since TRB values in the B horizons range between 330 and 425 cmol(+) kg<sup>-1</sup>. The soils are loamy clayey to clayey (% clay: 33-55%), and contain high charge clay minerals. They do not differ in their Atterberg limits, which classify the soils as medium plasticity soils in the Casagrande plasticity diagram. Our data further show that both soils have a medium swelling potential. XRD show that the clay fraction consists of kaolinite and smectite and/or vermiculite. The latter 2:1 clay minerals are expandable and swelling clays, respectively. They give these two soils their plasticity and swelling properties. These two properties play an important role in the mechanical behavior of water-saturated soils. Indeed, swelling reduces soil cohesion while the plasticity index and the liquidity limit vary inversely with the internal angle of friction of the soil; cohesion and internal angle of friction being the fundamental parameters of the soil shear resistance. In addition, the soil mantle covers a hard schistose rock whose declivity is parallel to the soil surface slope. Thus, after intense rainfall during the wet season, the water-saturated soil reaches a level of liquidity sufficient to favor a landslide, all the more easily if the slope of the hard rock is inclined in the direction of the gravity flow.gru</p>

2021 ◽  
Author(s):  
D.-G. J. M. Hougni ◽  
A. G. T. Schut ◽  
L. S. Woittiez ◽  
B. Vanlauwe ◽  
K. E. Giller

Abstract Aim Recycling of cocoa pod husks has potential to contribute to mineral nutrition of cocoa. Yet little is known of the nutrient content and nutrient release patterns from the husks. The potassium (K) rich husks are usually left in heaps in cocoa plantations in Africa. We aimed to understand and quantify release patterns of K and other nutrients from husks under varying rainfall regimes and assessed the effects of partial decomposition and inundation on nutrient leaching rates. Methods We incubated chunks of cocoa pod husks to assess decomposition rates and we measured nutrient leaching rates from two sets of husk chunks: one set was placed in tubes that were submitted to simulated scheduled rainfall events while the second set was continuously inundated in beakers. Results Decomposition of husks followed a second-order exponential curve (k: 0.09 day−1; ageing constant: 0.43). Nutrient losses recorded within 25 days were larger and more variable for K (33%) than for other macronutrients released in this order: Mg > Ca ≈ P > N (less than 15%). Potassium leaching was mainly driven by rainfall frequency (P < 0.05) and reinforced by intense rainfall, especially at lower frequency. Under water-saturated conditions, 11% of K was leached out within 48 h from fresh husks compared with 92% from partially decayed husks. Conclusion Some initial decomposition of cocoa pod husks is required to expose K to intense leaching. As decomposition progresses, abundant K losses are to be expected under frequent and/or intense rainfall events.


2004 ◽  
Vol 76 (1) ◽  
pp. 139-145 ◽  
Author(s):  
Adolpho J. Melfi ◽  
Celia R. Montes ◽  
Adilson Carvalho ◽  
Maria Cristina Forti

The pedogeochemical maps present the spatial distribution of soils according to crystalochemical parameters (clay fraction) and physic-chemical aspects of the sorting complex (CEC and BS). These maps are adequate tool for environmental studies and particularly, for the analysis of the terrestrial ecosystem sensibility to acidic deposition. The pedogeochemical maps of the Brazilian soils, elaborated using FAO SoilWorld Map, allowed establishing the soil distribution according to 5 classes of vulnerability to acidic deposition, as defined by Stockholm Environmental Institute (SEI). From these maps, it is observed that about 50% of the Brazilian soils are high vulnerable to acidic deposition and can be included within the most sensitive class. This group is formed by well-developed and mature soils, constituted by clay minerals of kaolinite type associated with variable amount of gibbsite. About 8% of the soils can be considered as the least sensitive class. They correspond to Topomorphic Vertisols (Vertissolo, Embrapa 1999), Planosols (Planossolo, Embrapa 1999) and saline soils. Finally, the remaining soils represent the balanced media that dominate the northeastern semiarid zones and the south and northeastern subtropical zones.


2018 ◽  
Vol 36 (2) ◽  
pp. 708 ◽  
Author(s):  
A. Tsirambides

The genesis and the physical characteristics of the Neogene red beds of the cedar hills surrounding Thessaloniki are studied in this paper. The peri-urban forest, which covers these hills, has a 3,022 ha area. The topographic relief is smooth and is divided in eight small drainage basins, tapped through small creeks. The elevation of the surrounding hills varies between 85 and 560 m. The dominant land slopes vary between 20 and 55%. All the samples are coarse grained, poorly sorted and friable and present earthy lustre and red colour because of the extensive presence of iron oxides. Angular to sub-angular rock fragments derived from the metamorphic bedrock are very common. Petrographically, the studied red beds belong to the clayey sands. The extended presence (41-66%) of coarse silt and sand size grains (>20 pm) in the samples suggests a mild intensity of in situ weathering of the bedrock. X-ray diffraction analysis of the coarsest fractions 250-20 pm and 20-2 μιτι revealed in decreasing abundance the presence of quartz, feldspars, epidote, micas, chlorite, pyroxenes, amphiboles, and talc. These fractions contain the 2M polytype of mica, while in the fraction <2 pm the 1Μα polytype of illite predominates. In the clay fraction (<2 pm) illite, smectite, and chlorite predominate. The presence of mixed-layer minerals is limited, testifying the almost complete character of hydrolysis of the primary minerals. The formation of red beds took place on low relief land under alternating wet and dry seasons, which prevail in the eastern Mediterranean region since Neogene. The clay minerals are the in situ weathering products of the primary minerals of the greenschists, gneisses and gabbros predominating in the studied area. The extensive presence of clay size grains (11-26%) in the samples, their poor sorting, and their sub-angular morphology, indicate that the red beds are texturally immature. In addition, the abundance of feldspars and Fe-Mg minerals reflects mineralogical immaturity. The low relief and the long-lasting tectonic stability in the Thessaloniki district were essential for the significant thickness of the red beds. The oxygen isotope data of the <0.2 pm fraction (+18.2 to +18.8%o) confirm the pedogenic origin of the clay minerals present. The red beds studied present low plasticity with liquid limit (WÏ) 26.9 to 33.4% and plasticity index (lp) 9.1 to 17.3%. In addition, they have high consolidation index (lc) values (1.03 to 2.28). The swelling potential is low to medium and the activity varies between 0.5 and 1.0. The consolidation and induration degree of the samples analyzed is low, because of the great range of their mineralogical composition and the mild conditions of pressure and temperature to which they have been submitted. The studied red beds are not considered problematic for the foundation of various constructions on them.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 718
Author(s):  
Isis Armstrong Dias ◽  
Leonardo Fadel Cury ◽  
Bruno Guimarães Titon ◽  
Gustavo Barbosa Athayde ◽  
Guilherme Fedalto ◽  
...  

Mg clay minerals are usually associated with carbonates in alkaline-saline environments, precipitated from solution and/or transformation from other minerals. The aim of this research is to identify the mineralogy and geochemistry of clay minerals in different alkaline lakes in the Nhecolândia region, the southernmost region of the Pantanal wetland (Brazil). Sediment samples were analyzed by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and transmission electron microscopy. Water samples were analyzed, determining their main cations and anions, in order to understand their relationship with the clays. The analyses allowed classifying the water bodies as saline, oligosaline and freshwater lakes. The sediments are composed mainly of quartz and a fine-clay fraction, dominated by illite, kaolinite and smectite. The XRD results showed illite and smectite mixed-layered in the saline lakes at Barranco Alto farm, whereas at Nhumirim farm, trioctahedral smectite was only observed in one lake. The smectite minerals were normally identified coupled with calcite at the top of the sequences, associated with exopolymeric substances (EPS) in the lakes, suggesting that these minerals are precipitating due to the physical-chemical and biological conditions of the water bodies.


Clay Minerals ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 325-336 ◽  
Author(s):  
A. Violante ◽  
A. de Cristofaro ◽  
M.A. Rao ◽  
L. Gianfreda

AbstractProteins (catalase, albumin, pepsin and lysozyme with different molecular weights and isoelectric points) were differently adsorbed at pH 7.0 on the clay fraction of three raw Na-saturated smectites (Crook and Uri montmorillonites and one hectorite). The adsorption isotherms of proteins on clay minerals showed typical Langmuir characteristics. Lysozyme was adsorbed under the effect of electrostatic interactions between the opposite charges of clay surfaces and protein molecules, whereas catalase and albumin were adsorbed under the effect of non-electrostatic forces. Pepsin was held in relatively high amounts only on the surfaces of hectorite. Proteins were intercalated in the interlayers spaces of smectites, usually undergoing extensive unfolding. Protein-smectite complexes showed different behaviour to heating treatment. Some complexes remained practically unchanged after heating at 200°C. Presence of ‘wrecks’ of interlayered materials was found after heating at 500°C for two hours. The amounts of proteins adsorbed on the external and interlamellar surfaces of clay minerals, partially coated with OH-Al species, were much lower than those fixed on the clean clays. Only lysozyme was intercalated in chlorite-like complexes.


2002 ◽  
Vol 50 (3) ◽  
pp. 388-400 ◽  
Author(s):  
Christoph Vogt ◽  
Jörn Lauterjung ◽  
Reinhard X. Fischer
Keyword(s):  

2002 ◽  
Vol 41 (12) ◽  
pp. 2853-2857 ◽  
Author(s):  
Özkan Küçük ◽  
M. Muhtar Kocakerim ◽  
Ahmet Yartaşı ◽  
Mehmet Çopur

Soil Research ◽  
2013 ◽  
Vol 51 (3) ◽  
pp. 222 ◽  
Author(s):  
D. Ketrot ◽  
A. Suddhiprakarn ◽  
I. Kheoruenromne ◽  
B. Singh

Iron (Fe) oxides and organic matter (OM) play important roles in maintaining the fertility of highly weathered soils. The main objective of this study was to investigate the interactive effects of variable surface charge minerals, particularly Fe oxide minerals, and OM on the charge properties of red soils from Thailand. We also evaluated the effect of the 5 m NaOH procedure, used to concentrate Fe oxides from soils, on the charge characteristics of Fe oxide concentrates. Fourteen clay fractions (untreated and OM-free clay fractions), and Fe oxide concentrates of these clays, were used in the study. Cation exchange capacity (CEC) and electrophoretic mobility (EM) were measured for the soil clays, artificial mixtures, and goethite adsorbed with humic acid (HA) and phosphate (P). Kaolinite and Fe oxides (predominantly a mixture of hematite and goethite) were the main minerals in the clay fraction. Results indicated that OM or metal–OM complexes may have blocked or neutralised negatively charged sites on clay minerals. After OM removal these sites became accessible, inducing an increase in CEC and shifting the EM values towards more negative values and the isoelectric point (IEP) towards lower pH for many samples. The CEC values of Fe oxide concentrates prepared by 5 m NaOH treatment were overestimated and their EM and IEP shifted towards more negative values. It is possible that the amorphous phase from clay dissolution was still present in the Fe oxide concentrates, or the adsorption of silicate ions modified the surfaces of Fe oxides concentrates. Humic acid and P adsorbed on Fe oxide surfaces caused the IEP to shift to lower values. In natural soil conditions, a variety of anions can be adsorbed on Fe oxide surfaces, which might lead to higher values of negative charge and lower IEP than observed for pure synthetic minerals.


Clay Minerals ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 481-498 ◽  
Author(s):  
F. Iacoviello ◽  
G. Giorgetti ◽  
F. Nieto ◽  
I. T. Memmi

AbstractWe have examined the nature and origin of smectites in glaciomarine sediments of the AND-2A drill core (McMurdo Sound, Antarctica) by means of X-ray diffraction (XRD) analyses on the clay fraction, field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM) observations and SEM-EDS microanalyses on smectite particles. Relying on the smectite variation throughout the drill core it was possible to split the sequence into three units. Smectites throughout the core are either detrital or authigenic. Detrital smectites are close to montmorillonite-beidellite in composition while newly-formed smectites frequently have higher Fe-Mg contents and intermediate compositions between the saponite and nontronite field, with lower amounts in the montmorillonite-beidellite field. In the upper sedimentary sections (Unit I, and Unit II, 36-440 mbsf, 0.7-16.5 Ma) smectites are interpreted to be predominantly detrital, whereas in the lower portion of the core (Unit III, 440-1123.20 mbsf, 16.5-20.2 Ma) authigenic smectites are the most common feature. The predominance of mica, the abundance of chlorite, and the nature of smectites in the upper units indicate physical weathering under cold and dry climate, and a dominant provenance for the clay minerals from the Transantarctic Mountains. Smectites in the lower unit are considered mostly authigenic and they are most likely to be the result of early diagenetic processes, being formed from the alteration of volcanic material (glass, pyroxenes and feldspars) and/or through precipitation from fluids of a possible hydrothermal origin. Our survey attests to the importance of discriminating between a detrital and authigenic nature of smectites as the occurrence of authigenic clay minerals in ancient sedimentary successions might lead to incorrect palaeoclimatic interpretations, since they can be affected by diagenetic processes, thus obliterating the climatic signal.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 970
Author(s):  
Maurício Dias da Silva ◽  
Márcia Elisa Boscato Gomes ◽  
André Sampaio Mexias ◽  
Manuel Pozo ◽  
Susan Martins Drago ◽  
...  

The object of this study is magnesian clay minerals present in carbonate rocks of the post-rift phase of the pre-salt in the Santos Basin. These rocks developed in an Aptian-age alkaline lacustrine environment. This study summarizes the formation of clay minerals associated with different lithotypes in a range of 19 m and a depth of more than 5100 m. They were characterized from petrographic analysis by optical microscopy, X-ray diffraction (total sample and clay fraction), and modeling by Newmod®; and examined and analyzed by scanning electron microscopy. An approach based on identifying lithotypes and characterization of microsites allowed us to understand the occurrence of different clay minerals. Kerolite was the most abundant mineral in the sampled range. It occurs in lamellar aggregates under greater preservation of the original rock lamination and in association with spherulites and shrubs. The Stv/Ker mixed layers occurs in the same association, and formed finer unlaminated aggregates associated with the more intense dolomitization and silicification processes. Saponite occurs associated with detrital minerals forming clayey levels intercalated with microcrystalline carbonates. Fluids with a high Mg/Si and pH < 9 favor the precipitation of kerolite. The increase in pH during diagenesis may be responsible for the formation of Stv/Ker mixed layers.


Sign in / Sign up

Export Citation Format

Share Document