Paying attention to the isolated pools phase in temporary rivers. A challenge to the ecological quality assessment of temporary rivers.

Author(s):  
Núria Bonada ◽  
Francesc Gallart ◽  
Narcís Prat ◽  
Gisela Bertran ◽  
Miguel Cañedo-Argüelles ◽  
...  

<p>Temporary rivers are characterized by shifting habitats between flowing, non-flowing and dry phases. Despite the fact that they are currently receiving significant attention by researchers and managers, the non-flowing (standing pools) phase has been largely disregarded. However, isolated pools in temporary rivers are transitional habitats of major ecological relevance as they can act as refuges for maintaining local and regional freshwater biodiversity. Factors such as pool duration and size, local physicochemical conditions, time since disconnection, distance to other freshwater habitats or presence of predators are crucial for a comprehensive understanding of the ecology of these habitats, and compromise to work towards adequate ecological quality assessments and conservation practices in temporary rivers.</p><p>Research is ongoing focused on the development of a method for assessing the ecological status of disconnected pools, based on the relationship between the time elapsed after the pool disconnection and the characteristics of the biological communities taking into account the above-mentioned factors. The prevalence of the pool phase is assessed using the TREHS software tool through interviews with citizens as well as aerial and surface photographs examination. The time since disconnection is assessed with the help of low-cost sensors and water stable isotopes, whereas the local environmental characteristics are assessed using regular metrics. Finally, biological communities of the pools are characterized using both taxonomic and functional metrics, with the support of metabarcoding techniques, applied to diatoms, macrophytes, macroinvertebrates and fishes. This method aims to be used by water managers to improve the monitoring of the ecological status of temporary rivers, which are common around the world, harbor unique biodiversity and provide key ecosystem services.</p>

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2870 ◽  
Author(s):  
Núria Bonada ◽  
Miguel Cañedo-Argüelles ◽  
Francesc Gallart ◽  
Daniel von Schiller ◽  
Pau Fortuño ◽  
...  

Temporary rivers are characterized by shifting habitats between flowing, isolated pools, and dry phases. Despite the fact that temporary rivers are currently receiving increasing attention by researchers and managers, the isolated pools phase has been largely disregarded. However, isolated pools in temporary rivers are transitional habitats of major ecological relevance as they support aquatic ecosystems during no-flow periods, and can act as refugees for maintaining local and regional freshwater biodiversity. Pool characteristics such as surface water permanence and size, presence of predators, local physicochemical conditions, time since disconnection from the river flow, or distance to other freshwater habitats challenge a comprehensive understanding of the ecology of these habitats, and challenge ecological quality assessments and conservation practices in temporary rivers. In this paper, we aim at providing a characterization of isolated pools from a hydrological, geomorphological, physicochemical, biogeochemical, and biological point of view as a framework to better conceptualize, conserve, and manage these habitats.


2021 ◽  
pp. 323-340
Author(s):  
Sebastian Höss ◽  
Walter Traunspurger

Abstract This chapter, after a general introduction to quality assessments of freshwater habitats, reviews the use of freshwater nematodes as in situ bioindicators, including in monitoring the ecological quality of freshwater habitats. By drawing on studies of nematode communities in unpolluted and polluted habitats as examples, it highlights both the different methods used to assess the quality of freshwater ecosystems and their applications. A focus of the chapter is the development of a new index that uses freshwater nematodes to assess chemically induced changes in the ecological status of freshwater habitats, the NemaSPEAR[%]-index (Nematode SPEcies At Risk).


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 918 ◽  
Author(s):  
Oscar Belmar ◽  
Carles Ibáñez ◽  
Ana Forner ◽  
Nuno Caiola

Designing environmental flows in lowland river sections and estuaries is a challenge for researchers and managers, given their complexity and their importance, both for nature conservation and economy. The Ebro River and its delta belong to a Mediterranean area with marked anthropogenic pressures. This study presents an assessment of the relationships between mean flows (discharges) computed at different time scales and (i) ecological quality based on fish populations in the lower Ebro, (ii) bird populations, and (iii) two shellfish fishery species of socioeconomic importance (prawn, or Penaeus kerathurus, and mantis shrimp, or Squilla mantis). Daily discharge data from 2000 to 2015 were used for analyses. Mean annual discharge was able to explain the variation in fish-based ecological quality, and model performance increased when aquatic vegetation was incorporated. Our results indicate that a good ecological status cannot be reached only through changes on discharge, and that habitat characteristics, such as the coverage of macrophytes, must be taken into account. In addition, among the different bird groups identified in our study area, predators were related to river discharge. This was likely due to its influence on available resources. Finally, prawn and mantis shrimp productivity were influenced up to a certain degree by discharge and physicochemical variables, as inputs from rivers constitute major sources of nutrients in oligotrophic environments such as the Mediterranean Sea. Such outcomes allowed revisiting the environmental flow regimes designed for the study area, which provides information for water management in this or in other similar Mediterranean zones.


Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Shengjie Wang ◽  
Kun Wang ◽  
Chunsong Zhang ◽  
Jian S Dai

Abstract A kinetostatic approach applied to the design of a backflip strategy for quadruped robots is proposed in this paper. Inspired by legged animals and taking the advantage of the leg workspace, this strategy provides an optimal design idea for the low-cost quadruped robots to achieve self-recovery after overturning. Through kinetostatic and energy analysis, a four-stepped backflip strategy based on the selected rotation axis with minimum energy is proposed, with a process of selection, lifting, rotating, and protection. The kinematic factors that affect the backflip are investigated, along with the relationship between the design parameters of the leg and trunk being analyzed. At the end of this paper, the strategy is validated by a simulation and experiments with a prototype called DRbot, demonstrating that the strategy endows the robot a strong self-recovery ability in various terrains.


2021 ◽  
pp. 1-15
Author(s):  
PHUC VAN PHAN

Public governance and income inequality relationship is complex and debatable. This paper examines the extent to which the quality of local governance affects inequality in Vietnam spanning the 2006–2016 period. I apply a generalized method of moments (GMM) estimators to a dynamic panel data extracted from the Vietnam’s provincial competitiveness index and the Vietnam household living standard surveys. The findings are that there is a positive inequality — corruption link but no statistically significant correlation coefficient between the overall level of governance and income disparity. The study, therefore, suggests that the Vietnamese Government at all levels should consider both more effective legal practices and economic low-cost solutions to mitigate corruption.


Nematology ◽  
2021 ◽  
pp. 1-14
Author(s):  
Taciana Kramer de Oliveira Pinto ◽  
Sérgio A. Netto ◽  
André Morgado Esteves ◽  
Francisco José Victor de Castro ◽  
Patricia Fernandes Neres ◽  
...  

Summary Brazil has one of the largest varieties of aquatic ecosystems and rich freshwater biodiversity, but these components have constantly been damaged by the expansion of unsustainable activities. Free-living nematodes are an abundant and ubiquitous component of continental benthic communities, occurring in all freshwater habitats, including extreme environments. Despite this, hardly any studies have examined the generic composition of nematodes in different latitudes and the geographic overlap of assemblages. We provide data on nematode genera from six regions in Brazil, over a north-south gradient spanning about 4000 km, encompassing rivers, coastal lakes, and reservoirs with different levels of human impact. Interpolation/extrapolation curves were generated and the zeta diversity was used to assess the overlap of nematode assemblages. Freshwater nematode assemblages comprised 54 families and 132 genera. Mononchidae, Monhysteridae, Chromadoridae, Tobrilidae and Dorylaimidae were the most diverse families. Differences in diversity and high turnover of genera were found among regions, probably related to stochastic processes. Mononchus was the only widely distributed genus. Our results revealed a high biodiversity of free-living freshwater nematodes among the regions. The limited spatial coverage of the data reveals an enormous knowledge gap in a country with 12% of the world’s freshwater resources. The lack of spatial patterns, e.g., latitudinal variation, suggests that freshwater nematode assemblages are primarily structured by the intrinsic properties of habitats. This reinforces the uniqueness of freshwater ecosystems and suggests that the nematode assemblages may be sensitive to environmental disturbances, since the limited distributions of taxa may lead to lower resilience.


2019 ◽  
Vol 13 (1) ◽  
pp. 47-61
Author(s):  
Guenther Retscher ◽  
Jonathan Kleine ◽  
Lisa Whitemore

Abstract More and more sensors and receivers are found nowadays in smartphones which can enable and improve positioning for Location-based Services and other navigation applications. Apart from inertial sensors, such as accelerometers, gyroscope and magnetometer, receivers for Wireless Fidelity (Wi-Fi) and GNSS signals can be employed for positioning of a mobile user. In this study, three trilateration methods for Wi-Fi positioning are investigated whereby the influence of the derivation of the relationship between the received signal strength (RSS) and the range to an Access Points (AP) are analyzed. The first approach is a straightforward resection for point determination and the second is based on the calculation of the center of gravity in a triangle of APs while weighting the received RSS. In the third method a differential approach is employed where as in Differential GNSS (DGNSS) corrections are derived and applied to the raw RSS measurements. In this Differential Wi-Fi (DWi-Fi) method, reference stations realized by low-cost Raspberry Pi units are used to model temporal RSS variations. In the experiments in this study two different indoor environments are used, one in a laboratory and the second in the entrance of an office building. The results of the second and third approach show position deviations from the ground truth of around 2 m in dependence of the geometrical point location. Furthermore, the transition between GNSS positioning outdoors and Wi-Fi localization indoors in the entrance area of the building is studied.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Navaneetha Krishnan Rajan ◽  
Zeying Song ◽  
Kenneth R. Hoffmann ◽  
Marek Belohlavek ◽  
Eileen M. McMahon ◽  
...  

Two-dimensional echocardiography (echo) is the method of choice for noninvasive evaluation of the left ventricle (LV) function owing to its low cost, fast acquisition time, and high temporal resolution. However, it only provides the LV boundaries in discrete 2D planes, and the 3D LV geometry needs to be reconstructed from those planes to quantify LV wall motion, acceleration, and strain, or to carry out flow simulations. An automated method is developed for the reconstruction of the 3D LV endocardial surface using echo from a few standard cross sections, in contrast with the previous work that has used a series of 2D scans in a linear or rotational manner for 3D reconstruction. The concept is based on a generalized approach so that the number or type (long-axis (LA) or short-axis (SA)) of sectional data is not constrained. The location of the cross sections is optimized to minimize the difference between the reconstructed and measured cross sections, and the reconstructed LV surface is meshed in a standard format. Temporal smoothing is implemented to smooth the motion of the LV and the flow rate. This software tool can be used with existing clinical 2D echo systems to reconstruct the 3D LV geometry and motion to quantify the regional akinesis/dyskinesis, 3D strain, acceleration, and velocities, or to be used in ventricular flow simulations.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7410
Author(s):  
Ruey-Ching Twu ◽  
Kai-Hsuan Li ◽  
Bo-Lin Lin

A low-cost polyethylene terephthalate fluidic sensor (PET-FS) is demonstrated for the concentration variation measurement on fluidic solutions. The PET-FS consisted of a triangular fluidic container attached with a birefringent PET thin layer. The PET-FS was injected with the test liquid solution that was placed in a common path polarization interferometer by utilizing a heterodyne scheme. The measured phase variation of probe light was used to obtain the information regarding the concentration change in the fluidic liquids. The sensor was experimentally tested using different concentrations of sodium chloride solution showing a sensitivity of 3.52 ×104 deg./refractive index unit (RIU) and a detection resolution of 6.25 × 10−6 RIU. The estimated sensitivity and detection resolutions were 5.62 × 104 (deg./RIU) and 6.94 × 10−6 RIU, respectively, for the hydrochloric acid. The relationship between the measured phase and the concentration is linear with an R-squared value reaching above 0.995.


Sign in / Sign up

Export Citation Format

Share Document