Plinian eruption of the Middle Pleistocene Irind volcano, Armenia

Author(s):  
Khachatur Meliksetian ◽  
Hripsime Gevorgyan ◽  
Ivan Savov ◽  
Charles Connor ◽  
Laura Connor ◽  
...  

<p>Large (VEI= 4-6) Quaternary explosive eruptions have repeatedly occurred in Armenia and the neighboring territories. Worth noting are the Plinian eruptions of Aragats stratovolcano (4096m), located in the vicinity of the Armenian capital city Yerevan (pop. >1 million) and producing lava flows variable in composition and size, pyroclastic density currents (PDCs) and fallout deposits (Connor et al., 2011; Gevorgyan et al., 2020). The youngest lavas from Aragats are 0.52 million years (myr) old and the youngest ignimbrites are 0.65 myr old. (Connor et al., 2011, Gevorgyan et al., 2020).</p><p>Here we present some features of a violent explosive Plinian eruption (VEI=4) from the relatively small, subsidiary Irind vent on the slopes of Aragats stratovolcano. We report results from newly mapped thick pumice fall deposits and pumice-rich welded lapilli-tuff and vitrophyres. Formation of up to ~10 m thick pumice fall deposits is related to a sustained Plinian eruption, while the formation of overlaying pumice tuffs (age= 0.490±0.028 M.yrs, Connor et al., 2011) and vitrophyre cover is interpreted as result of collapse of the eruption column due to a decrease of the magma supply.</p><p>Following the pyroclastic eruption, a voluminous (2.9-3.6 km<sup>3</sup>) effusive eruption of Irind created up to 120 m thick trachydacite lava flows that extended 18 km from the vent. Such long and thick lava flows are not typical for viscous felsic lavas. The Irind eruption products are characterized by a plagioclase-two pyroxene mineral association that is atypical for Aragats. The Irind magmas are trachydacitic  (SiO<sub>2</sub>= 66 wt; MgO= 0.7 wt%) with high- K<sub>2</sub>O contents (5.2 wt%) and enrichments in U, Th, LILE and LREE compared to Aragats. Geothermobarometry and hygrometry based on detailed textural analysis and mineral chemistry (Cpx, Opx, plagioclase, glass) reveals that Irind magmas also have elevated H<sub>2</sub>O, increased alkalinity and high T (~970 °C)- all features capable to generate magmas with much lower viscosity (4.2–4.5 log η Pa·s) in respect to typical dacites.</p><p>Our results support the view that often small eruptive vents (Irind) on the slopes of large coeval stratovolcanoes (Aragats) are not necessarily tapping their voluminous magma mushes underneath and are capable to deliver independent Plinian eruptions. We speculate that these are triggered by intrusions of hot, volatile-rich, alkaline felsic magmas, presumably emplaced fast, similar to the Chaiten eruption in 2008, and did not mix well with the otherwise dominant and older magmatic system under Aragats.</p><p><strong>References</strong></p><p>Connor C., Connor L., Halama, R., Meliksetian, K., Savov, I., 2011. Volcanic Hazard Assessment of the Armenia Nuclear Power Plant Site, Final Report, 278 pp.</p><p>Gevorgyan, H., Breitkreuz, C., Meliksetian, K, et al., 2020. Quaternary ring plain- and valley-confined pyroclastic deposits of Aragats stratovolcano (Lesser Caucasus): Lithofacies, geochronology and eruption history, JVGR 401, 1-22. </p>

The activity of the three stratovolcanoes on the island of Sao Miguel is documented by tephrochronology, and during the past 5000 years a total of some 57 volcanic eruptions have taken place, mostly of magnitudes 4-6 on Tsuya’s scale. Approximately half were trachytic, and half basaltic. Each stratovolcano has a caldera within which each has had one historic eruption. The trachytic eruptions were predominantly explosive, and most took place from vents situated within the calderas. Isopach and isograde maps of most of the resulting pumice fall deposits are given. The basaltic eruptions produced both lava flows and pyroclastics, and isopach and isograde maps are given for some of the main fall deposits. The Agua de Pau volcano has had particularly large explosive eruptions, several of them (including Fogo A, the largest in the past 5000 years) being of plinian type. The output of the three volcanoes over the 5000 years is equivalent to 4.6 km 3 of dense rock, at which rate the exposed parts of the volcanoes could have accumulated in 150000 years. At least half of the erupted material is trachytic, a proportion typical of the entire accessible parts of the volcanoes. The 50 known eruptive vents of the past 5000 years are distributed in a zone 55 km long by 8 km wide which may lie above a major fracture zone. Some eruptive fissures trend obliquely across this zone, suggesting right-lateral movement along the fracture. Basaltic eruptions were confined to a much smaller area than in the preceding millennia perhaps due to the formation, at the time of the great Fogo A eruption 5000 years ago, of a broad trachytic magma chamber underlying the Agua de Pau and Furnas volcanoes which basaltic magma has since been unable to penetrate.


1980 ◽  
Vol 117 (5) ◽  
pp. 425-436 ◽  
Author(s):  
R. S. J. Sparks ◽  
T. C. Huang

SummaryMany volcanic ash layers preserved in deep-sea sediments are the products of large magnitude ignimbrite eruptions. The characteristics of such co-ignimbrite ash-fall deposits are illustrated by two layers from the Eastern Mediterranean: the Minoan ash, Santorini, and the Campanian ash, Italy. These layers are divisible into a coarse lower unit and a fine upper unit in proximal cores. Both layers also show striking bimodal grain size distributions in more distal cores. The coarser mode decreases in median diameter with distance from source whereas the finer mode shows no lateral variation. These features are interpreted in terms of a model for ignimbrite formation by eruption column collapse. Comparable volumes of ignimbrite and associated air-fall ejecta are produced.


2021 ◽  
Author(s):  
Mila Huebsch ◽  
Ulrich Kueppers ◽  
Guillaume Carazzo ◽  
Anne-Marie Lejeune ◽  
Audrey Michaud-Dubuy ◽  
...  

<p>Mt. Pelée is a historically active volcano, situated on the island of Martinique (Lesser Antilles), that has shown a variety of explosive styles in the recent past, ranging from dome-forming (Pelean) to open-vent (Plinian) eruptions.  The 1902-1905 eruption is infamous for the pyroclastic density currents (PDCs) that destroyed the towns of St. Pierre and Morne Rouge, killing 30 000 residents.  Since the last eruption (dome-forming) in 1929-1932, Mt. Pelée was quiet and considered dormant until recently.  In late 2020, the local Volcanological Observatory (OVSM) raised the alert level following a noticeable increase in seismicity, bringing into effect a reinforcement of monitoring resources.  As St. Pierre is long since re-established, along with several other towns along the volcano’s flanks, it is of utmost importance to understand the possible range of eruptive activity to improve the preparedness strategies of local communities.</p><p>The precise controls on eruption dynamics vary across volcanic systems and cannot be constrained via direct observation. However, crucial inferences can be made based on petrophysical properties and mechanical behaviours of erupted materials.  For this study, we collected samples from PDC deposits of Mt. Pelée, from the two historic Pelean (1902-1905, and 1929-1932) and three pre-Columbian Plinian eruptions (1300 CE P1, 280 CE P2, and 79 CE P3). We measured petrophysical properties (density, porosity, permeability) of cylindrical samples drilled from bomb-sized clasts and investigated their fragmentation behaviour via grain size and high-speed video analysis. These results are used in comparison with field data of grain-size distribution (GSD) of individual outcrops and calculated total GSD data.  We investigated the effects of transport-related sorting or fining.</p><p>The “Pelean” samples are found to be denser (32-47% open porosity) than the pumiceous “Plinian” samples (55-66% open porosity).  Moreover, these two classes are distinctly different in their crystallinity as samples underwent different ascent conditions.  In our experiments, distinct fragmentation behaviour and resulting GSDs are observed for samples from each eruption style, regardless of experimental pressure conditions (5-20 MPa). Our results show the paramount importance of open porosity on fragmentation efficiency in pumiceous samples, alongside a strong influence of crystallinity.  The fractal dimension of fragmentation calculated from weight fractions, independent of grain shape, shows clear differences in fragmentation efficiency as a function of sample properties and experimental starting conditions.</p><p>Our results suggest that (i) the variability in porosity and permeability is too low to cause the increased explosivity exhibited during the 1902 eruption compared to the 1929 event, (ii) open porosity has a major control on fragmentation efficiency in pumiceous samples, (iii) fragmentation efficiency can be effectively evaluated by calculating the fractal dimension of the cumulative weight fractions of experimental products.</p><p>The influence of crystallinity and pore textures on fragmentation efficiency must be further investigated to aid hazard model development for future eruptions of Mt. Pelée. Future work will constrain these textural parameters of naturally and experimentally fragmented materials from Mt. Pelée, to further elucidate the controls on eruptive dynamics at this hazardous volcano.</p>


2021 ◽  
Vol 21 (1) ◽  
pp. 417-437
Author(s):  
Joana Medeiros ◽  
Rita Carmo ◽  
Adriano Pimentel ◽  
José Cabral Vieira ◽  
Gabriela Queiroz

Abstract. The Azores are an active volcanic region that offers exceptional conditions for nature-based tourism, one of the main axes of economic growth in the archipelago. A future volcanic eruption may have long-term consequences to this economic sector. Therefore, it is fundamental to assess its vulnerability to volcanic hazards in order to try to mitigate the associated risk. This study proposes a new approach to assessing the economic impact of explosive eruptions on the tourism sector. We considered two eruptive scenarios for Fogo volcano (São Miguel Island), the most probable (Volcanic Explosivity Index, VEI, 4 sub-Plinian eruption) and the worst-case (VEI 5 Plinian eruption), both producing tephra fallout and pyroclastic density currents. The results of numerical simulations were overlaid with tourism-related buildings and infrastructure of Vila Franca do Campo municipality to identify the elements at risk. The loss present value method was used to estimate the benefits generated by the accommodation units over 30 years for different economic scenarios. The assessment of the economic impact using 2018 indicators reveals that in a near-total-destruction scenario, the economic loss is approximately EUR 145 million (considering a 2 % discount rate). This approach can also be applied to other volcanic regions, geologic hazards and economic sectors.


2019 ◽  
Vol 11 (18) ◽  
pp. 2151 ◽  
Author(s):  
Aldeghi ◽  
Carn ◽  
Escobar-Wolf ◽  
Groppelli

Fuego volcano (Guatemala) is one of the most active and hazardous volcanoes in the world. Its persistent activity generates lava flows, pyroclastic density currents (PDCs), and lahars that threaten the surrounding areas and produce frequent morphological change. Fuego’s eruption deposits are often rapidly eroded or remobilized by heavy rains and its constant activity and inaccessible terrain makes ground-based assessment of recent eruptive deposits very challenging. Earth-orbiting satellites can provide unique observations of volcanoes during eruptive activity, when ground-based techniques may be too hazardous, and also during inter-eruptive phases, but have typically been hindered by relatively low spatial and temporal resolution. Here, we use a new source of Earth observation data for volcano monitoring: high resolution (~3 m pixel size) images acquired from a constellation of over 150 CubeSats (‘Doves’) operated by Planet Labs Inc. The Planet Labs constellation provides high spatial resolution at high cadence (<1–72 h), permitting space-based tracking of volcanic activity with unprecedented detail. We show how PlanetScope images collected before, during, and after an eruption can be applied for mapping ash clouds, PDCs, lava flows, or the analysis of morphological change. We assess the utility of the PlanetScope data as a tool for volcano monitoring and rapid deposit mapping that could assist volcanic hazard mitigation efforts in Guatemala and other active volcanic regions.


2012 ◽  
Vol 77 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Joyce Lundberg ◽  
Donald A. McFarlane

A distinctive white sediment in the caves of Mulu, Sarawak, Borneo is a well-preserved tephra, representing a fluvially transported surface air-fall deposit, re-deposited inside the caves. We show that the tephra is not the Younger Toba Tephra, formerly considered as most likely. The shards are rod-shaped with elongate tubular vesicles; the largest grains ~ 170 μm in length; of rhyolitic composition; and 87Sr/86Sr ratio of 0.70426 ± 0.00001. U–Th dating of associated calcites suggest that the tephra was deposited before 125 ± 4 ka, and probably before 156 ± 2 ka. Grain size and distance from closest potential source suggests an eruption of VEI 7. Prevailing winds, grain size, thickness of deposit, location of potential sources, and Sr isotopic ratio limit the source to the Philippines. Comparisons with the literature give the best match geochemically with layer 1822 from Ku et al. (2009a), dated by ocean core stratigraphy to 189 ka. This tephra represents a rare terrestrial repository indicating a very substantial Plinian/Ultra-Plinian eruption that covered the Mulu region of Borneo with ash, a region that rarely receives tephra from even the largest known eruptions in the vicinity. It likely will be a valuable chronostratigraphic marker for sedimentary, palaeontological and archaeological studies.


2021 ◽  
Author(s):  
Giulia Chiominto ◽  
Claudio Scarpati ◽  
Annamaria Perrotta ◽  
Domenico Sparice ◽  
Lorenzo Fedele ◽  
...  

&lt;p&gt;Plinian eruptions are highly energetic events that release cubic kilometres of magma in the form of pyroclastic material (pumice, lithic clasts and ash). These products tend to accumulate near the vent with considerable thickness. The rapid burial of the territory around the eruptive centre makes these eruptions extremely dangerous. For this purpose, the renowned 79 AD Vesuvius eruption, which destroyed the ancient cities of Pompeii and Stabiae (where Pliny the Elder founds his death) located respectively 10 and 15 km from the vent, was studied in detailed. The recent excavations carried out in collaboration with the Archaeological Park of Pompeii, both in Pompeii and in the Stabian villas, have shown the complete sequence of products of the 79 AD eruption that destroyed and covered these Roman cities. The discovery of thick sequences of reworked material accumulated during previous excavations, testifies for the presence of underground tunnels dug for the Royal House of Bourbon. Fall products of the 79 AD eruptive sequence, accumulated during the main Plinian phase and the successive sustained column phases, were studied in detail to investigate their sedimentological characteristics and how these were influenced by anthropic structures. Results from field investigation show that in both archaeological sites, fall deposits consist of white and grey pumice lapilli in the lower part of the eruptive sequence (units A and B), and of thin, lithic-rich layers interstratified to ash products emplaced by pyroclastic currents, in the highest part of the pyroclastic deposit (units D, G1, G3, I). A new thin lithic-rich layer (X2) has been observed near the top of the sequence at Stabiae. The internal structure of the Plinian pumice lapilli deposit appears weakly stratified in open areas, while it is strongly stratified near steep roofs (e.g., impluvium areas), where the deposit thickens. The observed stratification is confirmed by a significant variation of sedimentological parameters with the stratigraphic height (e.g., median ranging from -3.5 to -0.1&amp;#61542;), possibly related to fluctuations in the eruptive parameters. Locally, rolling of pyroclastic clasts on sloped roofs produced a well-stratified deposit with laterally discontinuous layers and rounded clasts. Several roofing-tiles, either intact or in fragments, were recovered at various stratigraphic heights in the pumice lapilli deposit both at Pompeii and Stabiae. &amp;#160;These tiles testify for the progressive collapse of the roofs under the increasing load of the falling lapilli clasts.&lt;/p&gt;


1989 ◽  
Vol 53 (373) ◽  
pp. 519-525 ◽  
Author(s):  
J. A. Wolff ◽  
Z. A. Palacz

AbstractThree voluminous Quaternary phonolitic pumice fall deposits erupted from the compositionally-zoned Tenerife magma chamber exhibit variability in Sr and Pb isotope ratios. It has been previously argued that the Sr isotope variations are due to syn-eruptive interaction between magma and hydrothermal fluids (Palacz and Wolff, 1989). Pb compositions are not correlated with Sr, and are believed to reflect magmatic values. Pb isotope ratios exhibit regular variation with degree of fractionation, and one zoned deposit is heterogeneous in Pb. The highest values seem to characterize the most fractionated upper parts of the zoned system. This is unlikely to be a consequence of magmatic recharge. Isotopic and trace element behaviour is instead consistent with combined assimilation and fractional crystalliza- tion, involving the recycling of material containing relatively radiogenic Pb, from within the volcanic edifice. Assimilation of sediment intercalated within the submarine portion of the pile is ruled out by the isotopic data. The most probable contaminant is a felsic igneous rock. Early trachytes reported by Sun (1980) have the required Pb isotope compositions and may approximately represent the assimilant.


1974 ◽  
Vol 111 (6) ◽  
pp. 539-548 ◽  
Author(s):  
S. Self ◽  
R. S. J. Sparks ◽  
B. Booth ◽  
G. P. L. Walker

SummaryThe 1973 eruption on Heimaey, Iceland, presented the opportunity to study the interaction of the principal factors that control the formation of pyroclastic fall deposits. The grain size characteristics and the dispersal of some of the scoria fall units within the Eldfell Scoria deposit are described and related to observations made on the wind speed and direction, the height of the eruption column, the ‘muzzle’ velocity and the various styles of activity during the first month of the eruption.


Sign in / Sign up

Export Citation Format

Share Document