Contrasting responses of soil phosphatase activity to nitrogen and phosphorus loadings: Implications for phosphorus management

Author(s):  
Ji Chen ◽  
Yiqi Luo ◽  
Junji Cao ◽  
Uffe Jørgensen ◽  
Daryl Moorhead ◽  
...  

<p>Human activity has caused imbalances in nitrogen (+N) and phosphorus (+P) loadings of ecosystems around the world, causing widespread P limitation of many biological processes. Soil phosphatases catalyze the hydrolysis of P from a range of organic compounds, representing an important P acquisition pathway. Therefore, a better understanding of soil phosphatase activity as well as the underlying mechanisms to individual and combined N and P loadings could provide fresh insights for wise P management. Here we show, using a meta-analysis of 188 published studies and 1277 observations that +N significantly increased soil phosphatase activity by 14%, +P significantly repressed it by 30%, and +N+P led to non-significant responses of soil phosphatase activity. Responses of soil phosphatase activity to +N were positively correlated with soil C and N content, whereas the reverse relationships were observed for +P and +N+P. Similarly, effects of +N on soil phosphatase activity were positively related to microbial biomass C, microbial biomass C:P, and microbial biomass N:P, whereas reverse relationships were observed for +P. Although we found no clear relationship between soil pH and soil phosphatase activity, +N-induced reductions in soil pH were positively correlated with soil phosphatase activity. Our results underscore the integrated control of soil and microbial C, N and P stoichiometry on the responses of soil phosphatase activity to +N, +P, and +N+P, which can be used to optimize future P management.</p>

1998 ◽  
Vol 78 (4) ◽  
pp. 581-587 ◽  
Author(s):  
Roger Lalande ◽  
Bernard Gagnon ◽  
Régis R. Simard

Addition of compost from various sources and of different maturity may affect the soil biochemical properties. A field study was conducted to evaluate the effect of different composts, spring-applied alone or in combination with ammonium nitrate (AN), on microbial biomass C (MBC) and alkaline phosphatase activity (APA) in two soils cropped with spring wheat (Triticum aestivum L. 'Messier') in eastern Quebec, Canada. The experiment was conducted in 1994 and 1995 at different sites on a Kamouraska clay (Orthic Humic Gleysol) and a Saint-André sandy loam (Fragic Humo-Ferric Podzol). Treatments included composts at 180 kg N ha−1, composts at 90 kg N ha−1 supplemented with AN, AN at 90 kg N ha−1, and an unfertilized control. Soil MBC and APA were measured 30 d after compost application and at wheat harvest. Additional sampling was made the following spring. Generally, larger MBC and APA values were found at wheat harvest in soils treated with composts alone than with AN alone or unfertilized. These effects were related to soil C content and climatic conditions. Compost type affected soil biochemical properties which could be attributed to the total C supply and material maturation state. Compost addition constitutes an efficient short-term way to promote soil microbial biomass and enzyme activity in cold climates. Key words: Compost, fertilizer, microbial biomass, soil enzyme, wheat


2020 ◽  
Author(s):  
Marta Cattin ◽  
Marc Stutter ◽  
Alfonso Lag-Brotons ◽  
Phil Wadley ◽  
Kirk T. Semple ◽  
...  

<p>The application of digestate from anaerobic digestion to grassland soils is of growing interest as an agricultural practice. However, significant uncertainties surrounding the potential impacts of digestate application on processes associated with the soil microbial community remain, particularly for processes governing Carbon Use Efficiency (CUE) and the broader soil C cycle. In this research, we examined how the C:N stoichiometry of digestate and the nutrient status of soil influenced the impact of digestate application on the soil C cycle.  </p><p>Three fractions of digestate (whole [WD], solid [SD] and liquid [LD]), spanning a range of C:N, were each applied to two soils of contrasting starting nutrient status (high and low) and compared to unamended controls (Ctr). Two short-term incubations, each lasting seven days, were undertaken. In the first, applications of WD, SD and LD each achieved the same total N input to soils. In the second, digestate applications were adjusted to provide consistent total C input to soils. In each incubation, CO<sub>2</sub>-C efflux, microbial biomass C (C<sub>micro</sub>) and pH were determined.  </p><p>In each of the two incubations, the application of digestate significantly increased cumulative CO<sub>2</sub>-C efflux compared to control soils. However, the precise effect of digestate application varied between the two incubations and with both soil nutrient status and digestate fraction. Microbial biomass C was largely unchanged by the treatments in both incubations. During the first incubation, soil pH decreased substantially following each digestate treatment in both soil types. A similar pattern was observed within the second incubation in the high nutrient soil. However, in contrast, soil pH increased substantially following LD and WD application to the low nutrient soil in the second incubation. Varying CUE responses are likely to be observed following the application of digestate to agricultural soils, dependent on digestate fraction, C:N ratio of the digestate, and the initial soil nutrient status. Therefore, digestate application rates and soil management must be carefully planned in order to avoid adverse impacts of digestate application to land. </p><p> </p>


Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 623 ◽  
Author(s):  
Roberto Cardelli ◽  
Gabriele Giussani ◽  
Fausto Marchini ◽  
Alessandro Saviozzi

The use of the residual material from waste aerobic digestion and biochar as amendments is currently discussed in the literature concerning the positive and negative effects on soil quality. We assessed the suitability of digestate (D) from biogas production and green biochar (B) to improve soil biological activity and antioxidant capacity and investigated whether there is an interaction between digestate and biochar applied to soil in combination. In a short-term (100-days) laboratory incubation, we monitored soil chemical and biological parameters. We compared soil amendments with 1% D (D1), 5% D (D5), 1% B (B), digestate–biochar combinations (D1+B and D5+B), and soil with no amendment. In D5, CO2 production, antioxidant capacity (TEAC), and dehydrogenase activity (DH-ase) and the contents of microbial biomass C, DOC and alkali-soluble phenols increased to the highest level. The biochar increased the total organic C (TOC) and TEAC of soil but decreased DOC, CO2 production, microbial biomass C, and DH-ase. The addition of biochar to digestate reduced soluble compounds (DOC and phenols), thus limiting the amount and activity of the soil microbial biomass (CO2 production and DH-ase). After 100 days of incubation D5+B showed the highest TOC content (82.8% of the initial amount). Both applied alone and in combination with digestate, the biochar appears to enrich the soil C sink by reducing CO2 emissions into the atmosphere.


1999 ◽  
Vol 79 (4) ◽  
pp. 529-533 ◽  
Author(s):  
R. L. Haney ◽  
A. J. Franzluebbers ◽  
F. M. Hons ◽  
D. A. Zuberer

Routine determination of soil microbial biomass C has shifted during the past decade from chloroform fumigation-incubation to chloroform fumigation-extraction using 0.5 M K2SO4 as extractant. We compared extractable C with water and 0.5 M K2SO4 in eight soils ranging in pH from 5.4 to 8.3. In unfumigated soils with low pH, extractable C was 0.8- to 1.2-fold greater with water than with 0.5 M K2SO4. However, in unfumigated soils with pH > 7.7, extractable C, although not statistically significant, was 11 to 19% less with water than with 0.5 M K2SO4. In fumigated soils, no difference in extractable C between water and 0.5 M K2SO4 was detected among soils with pH < 7.7, but extractable C was 13 to 17% less with water than with 0.5 M K2SO4 with pH > 7.7. Our results suggest that 0.5 M K2SO4 (1) may flocculate soil and cause adsorption of solubilized C onto colloids at pH < 7.7, but (2) may disperse calcareous soils at pH > 7.7, thereby differentially affecting the fate of solubilized C depending upon soil pH. Our results put into question the widespread adaptability of using chloroform fumigation-extraction to estimate microbial biomass C. Key words: Extractable carbon, chloroform fumigation-extraction, microbial biomass


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaoyun Lu ◽  
Hong Tian ◽  
Heshan Zhang ◽  
Junbo Xiong ◽  
Huimin Yang ◽  
...  

AbstractPlants and soil interactions greatly affect ecosystems processes and properties. Ecological stoichiometry is an effective means to explore the C, N, P correlation between plants and soil and the relationship between plant growth and nutrient supply. Serious soil erosion on China’s Loess Plateau has further barrenness the soil. Fertilization solves the problem of ecosystem degradation by improving soil fertility and regulating the ecological stoichiometric between soil and plants. No fertilization (CK), nitrogen fertilization (N), phosphorus fertilization (P) and N and P combined fertilization (NP) treatments were set in an alfalfa grassland. Organic carbon (C), nitrogen (N) and phosphorus (P) nutrients and their stoichiometry were measured in shoot and soil. P and NP fertilization increased shoot C concentration (3.12%, 0.91%), and all fertilization decreased shoot N concentration (6.96%). The variation of shoot C and N concentrations resulted in a greater increase in shoot C:N under the fertilization treatment than that under CK (8.24%). Most fertilization treatments increased shoot P concentration (4.63%) at each cut, which induced a decrease of shoot C:P. Shoot N:P of most treatments were greater than 23, but it was lower under N and NP fertilization than that under CK. Fertilization only increased soil C in 2014, but had no effect on soil N. Soil P content was significantly higher under P fertilization in 2014 (34.53%), and all fertilization in the second cut of 2015 (124.32%). Shoot and soil C:P and N:P having the opposite changes to shoot and soil P, respectively. Our results suggest that the change of P after fertilization largely drove the changes of stoichiometric. The growth of alfalfa in the Loess Plateau was severely restricted by P. It is an effective method to increase the biomass of alfalfa by increasing the addition of N or NP fertilizer to alleviate P limitation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xianyu Yao ◽  
Qianchun Zhang ◽  
Haiju Zhou ◽  
Zhi Nong ◽  
Shaoming Ye ◽  
...  

Abstract Background There is substantial evidence that Eucalyptus for nitrogen (N) absorption and increasing the growth benefit from the introduction of N-fixing species, but the underlying mechanisms for microbially mediated soil N cycling remains unclear. Methods We investigated the changes of soil pH, soil water content (SWC), soil organic carbon (SOC), total N (TN), inorganic N (NH4+-N and NO3−-N), microbial biomass and three N-degrading enzyme activities as well as the biomass and N productivity of Eucalyptus between a pure Eucalyptus urophylla × grandis plantation (PP) and a mixed Dalbergia odorifera and Eucalyptus plantation (MP) in Guangxi Zhuang Autonomous Region, China. Results Compared with the PP site, soil pH, SWC, SOC and TN in both seasons were significantly higher at the MP site, which in turn enhanced microbial biomass and the activities of soil N-degrading enzymes. The stimulated microbial activity at the MP site likely accelerate soil N mineralization, providing more available N (NH4+-N in both seasons and NO3−-N in the wet-hot season) for Eucalyptus absorption. Overall, the N productivity of Eucalyptus at the MP site was increased by 19.7% and 21.9%, promoting the biomass increases of 15.1% and 19.2% in the dry-cold season and wet-hot season, respectively. Conclusion Our results reveal the importance of microbially mediated soil N cycling in the N absorption on Eucalyptus. Introduction of D. odorifera enhances Eucalyptus biomass and N productivity, improve soil N availability and increased soil C and N concentration, which hence can be considered to be an effective sustainable management option of Eucalyptus plantations.


Author(s):  
A. Ghani ◽  
U. Sarathchandra ◽  
K.W. Perrott ◽  
D.A. Wardle ◽  
P. Singleton ◽  
...  

This paper reports results of the first year of soil biochemical and microbiological monitoring programme carried out to establish "normal" ranges of values for these soil attributes. Study was conducted on 24 farm sites on yellow-brown loam soils around the Waikato area. Twelve dairy farms and a similar number of sheep-beef farms were selected on the basis of high productivity. Soil samples (0-75 mm depth) were collected at 3- monthly intervals and the following measurements were carried out: soil microbial- C, N, S and P, CO2 evolution, substrate-induced respiration, anaerobic mineralisable N, dehydrogenase activity, fluorescein diacetate (FDA) hydrolysis, amounts of soluble-C and N, extractable NO3 and NH4, soil pH, Olsen P, KH2PO4 extractable SO4-S and organic S, and hydraulic conductivity. Climatic data, records of fertiliser and other additives and productivity were also collected to interpret the variations in these properties. Variables measured from the Horotiu and Tirau silt loam soils showed considerable similarity, however, Otorohanga soils had significantly higher amounts of total and extractable soil C and N. As expected, being a higher input system, soil nutrient status (P, SO4, NO3 and NH4) on dairy farms was generally higher than the sheep-beef farms. The most significant difference was for the Olsen P values, which were about 60-70% higher under dairying. Soil pH on dairy farms was significantly higher than sheep- beef farms. However, total C and N values were significantly higher under sheep-beef than dairy farms. Similarly, the amounts of mineralisable N in all seasons were much higher for the sheep-beef than dairy farms. Apart from total microbial S, none of the other microbial biomass measurements showed any significant effect of season or difference among the soil types. This lack of seasonal effect on microbial biomass can be attributed to the unusual mild seasonal variation during the study. For the various microbial biomass measurements, sheep-beef farms generally had significantly higher values than dairy farms. Microbial C, N, SO4 and total S values were significantly higher for sheep-beef than dairying. The ratios between soil C, N to microbial C, N and microbial C:N showed no consistent pattern between the farm types. Keywords: C and N, enzyme activity, microbial biomass, seasonal variations, soil fertility


2015 ◽  
Vol 35 (20) ◽  
Author(s):  
郑棉海 ZHENG Mianhai ◽  
黄娟 HUANG Juan ◽  
陈浩 CHEN Hao ◽  
王晖 WANG Hui ◽  
莫江明 MO Jiangming

1988 ◽  
Vol 68 (3) ◽  
pp. 495-505 ◽  
Author(s):  
G. D. DINWOODIE ◽  
N. G. JUMA

This study was undertaken to compare some aspects of carbon cycling in a Gray Luvisol at Breton and a Black soil at Ellerslie, Alberta cropped to barley. Comparisons of the above and below-ground allocation of carbon, distribution of carbon in soil, and microbial use of carbon were made between sites. Shoot C, root C, microbial biomass C, soil organic C, water soluble organic C, and polysaccharide C were measured on four dates between 31 July and 20 Oct. 1986. The total quantity of carbon in the soil-plant system at Ellerslie (17.2 kg C m−2) was greater than at Breton (6.6 kg C m−2). On average shoot C at Ellerslie (247 g C m−2) was greater than at Breton (147 g m−2). The quantity of root C (avg. 21 g C m−2) was the same at both sites resulting in higher shoot C:root C ratios at Ellerslie than Breton. Microbial biomass (expressed as g C m−2 or g C g−1 root C) was one to two times lower at Breton than at Ellerslie but respiration (g CO2-C g−1 microbial biomass C) during a 10-d laboratory incubation was two to four times greater. Microbial biomass C, soluble C and polysaccharide C expressed as mg C g−1 of soil were less at Breton than Ellerslie. However when these data were compared on a relative basis in terms of soil C (g C g−1 soil C), microbial biomass C and soluble C were higher at Breton than Ellerslie. Polysaccharide C was the same at both sites. Although the microbial biomass was smaller at Breton than at Ellerslie, more carbon was lost from the system by microbial respiration and a greater proportion of the carbon in the soil was in microbial and soluble C pools. Soil characteristics, and cropping history affected the amount of carbon stabilized in soil. Key words: Chernozemic, Luvisolic, microbial C, soluble C, polysaccharide C, soil organic matter, barley


2013 ◽  
Vol 37 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Daniel Bini ◽  
Aline Fernandes Figueiredo ◽  
Mylenne Cacciolari Pinheiro da Silva ◽  
Rafael Leandro de Figueiredo Vasconcellos ◽  
Elke Jurandy Bran Nogueira Cardoso

Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.


Sign in / Sign up

Export Citation Format

Share Document