Detection of geomagnetic disturbances with ionospheric calibration solutions of LOFAR astronomical observations

Author(s):  
Katarzyna Budzińska ◽  
Maaijke Mevius ◽  
Marcin Grzesiak ◽  
Mariusz Pożoga ◽  
Barbara Matyjasiak ◽  
...  

<p>Perturbation of an electromagnetic signal due to its passing through the Earth’s ionosphere is one of the limiting factors in obtaining high quality astronomical observations at low frequencies. Since the establishment of the Low Frequency Array (LOFAR) radio interferometer, which is operating  in the frequency range between 10  and 240 MHz, effort has been made in order to properly remove this effect during the calibration routine.</p><p>In this study we use differential TEC solutions obtained from calibration of Epoch of Reionization project’s observations and investigate their sensitivity to weak geomagnetic disturbances with wavelet transform analysis. Comparison to the different geomagnetic indices allows us to study the possible origin of medium scale ionospheric structures that have been detected.</p>

Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2007 ◽  
Vol 38 (7) ◽  
pp. 11-17
Author(s):  
Ronald M. Aarts

Conventionally, the ultimate goal in loudspeaker design has been to obtain a flat frequency response over a specified frequency range. This can be achieved by carefully selecting the main loudspeaker parameters such as the enclosure volume, the cone diameter, the moving mass and the very crucial “force factor”. For loudspeakers in small cabinets the results of this design procedure appear to be quite inefficient, especially at low frequencies. This paper describes a new solution to this problem. It consists of the combination of a highly non-linear preprocessing of the audio signal and the use of a so called low-force-factor loudspeaker. This combination yields a strongly increased efficiency, at least over a limited frequency range, at the cost of a somewhat altered sound quality. An analytically tractable optimality criterion has been defined and has been verified by the design of an experimental loudspeaker. This has a much higher efficiency and a higher sensitivity than current low-frequency loudspeakers, while its cabinet can be much smaller.


2021 ◽  
Author(s):  
Alexander Hegedus ◽  
Ward Manchester ◽  
Justin Kasper ◽  
Joseph Lazio ◽  
Andrew Romero-Wolf

<p>The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window, which has never been achieved. One application for such a system is observing type II bursts that track solar energetic particle acceleration occurring at Coronal Mass Ejection (CME)-driven shocks. This is one of the primary science targets for SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. SunRISE is a NASA Heliophysics Mission of Opportunity that began Phase B (Formulation) in June 2020, and plans to launch for a 12-month mission in mid-2023. In this work we present an update to the data processing and science analysis pipeline for SunRISE and evaluate its performance in localizing type II bursts around a simulated CME.</p><p>To create realistic virtual type II input data, we employ a 2-temperature MHD simulation of the May 13th 2005 CME event, and superimpose realistic radio emission models on the CME-driven shock front, and propagate the signal through the simulated array. Data cuts based on different plasma parameter thresholds (e.g. de Hoffman-Teller velocity and angle between shock normal and the upstream magnetic field) are tested to get the best match to the true recorded emission.  This model type II emission is then fed to the SunRISE data processing pipeline to ensure that the array can localize the emission. We include realistic thermal noise dominated by the galactic background at these low frequencies, as well as new sources of phase noise from positional uncertainty of each spacecraft. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input, finding that SunRISE can resolve the source of type II emission to within its prescribed goal of 1/3 the CME width. This shows that SunRISE will significantly advance the scientific community’s understanding of type II burst generation, and consequently, acceleration of solar energetic particles at CMEs.  This unique combination of SunRISE observations and MHD recreations of space weather events will allow an unprecedented look into the plasma parameters important for these processes. </p>


2020 ◽  
Vol 635 ◽  
pp. A76 ◽  
Author(s):  
L. Bondonneau ◽  
J.-M. Grießmeier ◽  
G. Theureau ◽  
A. V. Bilous ◽  
V. I. Kondratiev ◽  
...  

Context. To date, only 69 pulsars have been identified with a detected pulsed radio emission below 100 MHz. A LOFAR-core LBA census and a dedicated campaign with the Nançay LOFAR station in stand-alone mode were carried out in the years 2014–2017 in order to extend the known population in this frequency range. Aims. In this paper, we aim to extend the sample of known radio pulsars at low frequencies and to produce a catalogue in the frequency range of 25–80 MHz. This will allow future studies to probe the local Galactic pulsar population, in addition to helping explain their emission mechanism, better characterising the low-frequency turnover in their spectra, and obtaining new information about the interstellar medium through the study of dispersion, scattering, and scintillation. Methods. We observed 102 pulsars that are known to emit radio pulses below 200 MHz and with declination above −30°. We used the Low Band Antennas (LBA) of the LOw Frequency ARray (LOFAR) international station FR606 at the Nançay Radio Observatory in stand-alone mode, recording data between 25 and 80 MHz. Results. Out of our sample of 102 pulsars, we detected 64. We confirmed the existence of ten pulsars detected below 100 MHz by the LOFAR LBA census for the first time (Bilous et al. 2020, A&A, 635, A75) and we added two more pulsars that had never before been detected in this frequency range. We provided average pulse profiles, DM values, and mean flux densities (or upper limits in the case of non-detections). The comparison with previously published results allows us to identify a hitherto unknown spectral turnover for five pulsars, confirming the expectation that spectral turnovers are a widespread phenomenon.


Author(s):  
Sophie R. Kaye ◽  
Ethan D. Casavant ◽  
Paul E. Slaboch

Abstract Attenuating low frequencies is often problematic, due to the large space required for common absorptive materials to mitigate such noise. However, natural hollow reeds are known to effectively attenuate low frequencies while occupying relatively little space compared to traditional absorptive materials. This paper discusses the effect of varied outer diameter, and outer spacing on the 200–1600 Hz acoustic absorption of additively manufactured arrays of hollow cylinders. Samples were tested in a 10 cm diameter normal incidence impedance tube such that cylinder length was oriented perpendicular to the incoming plane wave. By varying only one geometric element of each array, the absorption due to any particular parameter can be assessed individually. The tests confirmed the hypothesis that minimizing cylinder spacing and maximizing cylinder diameter resulted in increased overall absorption and produced more focused absorption peaks at specific low frequencies. Wider cylinder spacing produced a broader absorptive frequency range, despite shifting upward in frequency. Thus, manipulating these variables can specifically target absorption for low frequency noise that would otherwise disturb listeners.


The vibrational absorption spectra of some substituted benzenes have been measured in the range 50 to 450 cm -1 . The compounds were measured as liquids, in solutions, as crystalline solidsat low temperature, and in polyethylene matrices. The extension of the infrared spectrum to very low frequencies has made it possible to determine new values for many fundamental vibrations. An assignment of all the vibrational frequencies in the low-frequency range has been made, from the infrared and Raman data, for p -dihalogeno-benzenes, p -halogenotoluenes, p -halogeno-nitrobenzenes, and for some mono-substituted benzenes. Some measurements have been made on the marked variation of intensity of the lowest frequency bending mode of p -dihalogeno-benzenes.


It may be thought that radio astronomical measurements made on the earth are not subject to the influence of the atmosphere and ionosphere to any great extent and that consequently there is no demand for measurements from earth satellites or other space stations. Unfortunately this is not the case and certain measurements from outside the earth’s atmosphere are very much desired. The radio spectrum so far explored extends from a low frequency limit in the 10 to 20 Mc/s band, to an upper limit in the millimetre waveband. In the millimetre band the limitation to the extension of the spectrum arises from absorption bands in the atmosphere, whereas at low frequencies the extension is limited by absorption and disturbances in the ionosphere. In this paper some examples will be given of the need to overcome these obstacles.


1950 ◽  
Vol 23 (1) ◽  
pp. 163-171
Author(s):  
R. S. Witte ◽  
B. A. Mrowca ◽  
E. Guth

Abstract Velocity and attenuation measurements were made in thin strips of rubber from 0.5 to 5 kc and from −5° to 90° C to obtain the dynamic viscoelastic constants of Butyl and GR-S gum stocks. Above room temperature velocity and attenuation are higher in Butyl gum than in GR-S. In all cases, the velocity increases with decreasing temperature and increasing frequency. The attenuation shows a peak with temperature. For Butyl, the peaks are broad and occur at higher temperatures than for GR-S. For both stocks an increase in frequency gives peaks which are higher, sharper, and shifted to higher temperatures. In some instances, there are indications of peaks in the attenuation versus frequency at frequencies beyond our range of measurement. The behavior of the dynamic modulus in the temperature and frequency range studied is similar to that of the velocity. These results, combined with low temperature static measurements and very low frequency dynamic measurements, indicate a U-shaped modulus-temperature curve whose minimum broadens and shifts to higher temperatures with increasing frequency. This may be explained by a generalization of the kinetic theory of rubber elasticity, taking into account intra- and intermolecular forces, and considering time effects.


Author(s):  
Patrick Fluckiger ◽  
Ilan Vardi ◽  
Simon Henein

Abstract The Foucault pendulum is a well-known mechanism used to demonstrate the rotation of the Earth. It consists in a pendulum launched on linear orbits and, following Mach’s Principle, this line of oscillation will remain fixed with respect to absolute space but appear to slowly precess for a terrestrial observer due to the turning of the Earth. The theoretical proof of this phenomenon uses the fact that, to first approximation, the Foucault pendulum is a harmonic isotropic two degree of freedom (2-DOF) oscillator. Our interest in this mechanism follows from our research on flexure-based implementations of 2-DOF oscillators for their application as time bases for mechanical timekeeping. The concept of the Foucault pendulum therefore applies directly to 2-DOF flexure based harmonic oscillators. In the Foucault pendulum experiment, the rotation of the Earth is not the only source of precession. The unavoidable defects in the isotropy of the pendulum along with its well-known intrinsic isochronism defect induce additional precession which can easily mask the precession due to Earth rotation. These effects become more prominent as the frequency increases, that is, when the length of the pendulum decreases. For this reason, short Foucault pendulums are difficult to implement, museum Foucault pendulum are typically at least 7 meters long. These effects are also present in our flexure based oscillators and reducing these parasitic effects, requires decreasing their frequency. This paper discusses the design and dimensioning of a new flexure based 2-DOF oscillator which can reach low frequencies of the order of 0.1[Hz]. The motion of this oscillator is approximately planar, like the classical Foucault pendulum, and will have the same Foucault precession rate. The construction of a low frequency demonstrator is underway and will be followed by quantitative measurements which will examine both the Foucault effect as well as parasitic precession.


1994 ◽  
Vol 72 (3) ◽  
pp. 1061-1079 ◽  
Author(s):  
Z. M. Fuzessery

1. While hunting, the pallid bat uses passive sound localization at low frequencies to find terrestrial prey, and echolocation for general orientation. It must therefore process two different types of acoustic input at the same time. The pallid bat's echolocation pulse is a downward frequency-modulated (FM) sweep from 60 to 30 kHz. This study examined the response selectivity of single neurons in the pallid bat's central nucleus of the inferior colliculus (ICC) for FM sweeps, comparing the response properties of the high-frequency population, tuned to the biosonar pulse, with the low-frequency population, tuned below the pulse. The working hypothesis was that the high-frequency population would exhibit a response selectivity for downward FM sweeps that was not present in the low-frequency population. 2. Neurons were tested for their selectivity for FM sweep direction, duration, frequency range and bandwidth, and rate of frequency change. The extent to which they responded exclusively to tones, noise, and FM sweeps was also examined. Significant differences in the response properties of neurons in the two populations were found. In the low-frequency population, all neurons responded to tones, but only 50% responded to FM sweeps. Only 23% were selective for sweep direction. In the high-frequency population, all neurons responded to FM sweeps, but 31% did not respond to tones. Over one-half of this population was selective for sweep direction, and of those that were selective, all preferred the downward sweep direction of the biosonar pulse. A large percentage (31%) responded exclusively to downward sweeps, and not to tones or upward sweeps. None of the cells in either population responded to noise, or did so only at very high relative thresholds. 3. Both populations contained neurons that were selective for short stimulus durations that approximated the duration of the biosonar pulse, although the percentage was greater in the high-frequency population (58% vs. 20%). In the high-frequency population, 31% of the neurons tested for duration responded exclusively to both the sweep direction and duration of the biosonar pulse. 4. Downward FM-selective neurons, with one exception, were generally insensitive to the rate of frequency change of the FM sweep, as well as the frequency range and bandwidth of the sweep. They responded similarly to both the full 60- to 30-kHz sweep and to 5-kHz bandwidth portions of the full sweep.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document