Planetary Atmospheres and Surface simulation Chamber (PASC): A platform for planetary exploration and astrobiology applications

2021 ◽  
Author(s):  
Eva Mateo-Marti

<p>Even though space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations for <em>in-situ</em> planetary exploration; laboratory simulations are one of the most feasible research options to make advances both in planetary science and in a consistent description of the origin of life.  Planetary Atmosphere and Surfaces Chamber (PASC) are able to simulated atmosphere and surface temperature for the majority of the planetary objects and they are especially appropriate to study physico-chemical and biological changes induced in a particular sample due to in-situ irradiation in a controlled environment (1). Number of relevant applications in planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; photochemistry process on molecules and microorganisms potential habitability under planetary environmental conditions would be studied. Furthermore, UV-photocatalytic process on mineral surfaces has shown species potential fixation (2-6). Therefore, simulation chambers assess several multidisciplinary and challenging planetary and astrobiological studies. Furthermore, will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations.</p> <p>References:</p> <p>1.- Mateo-Martí, E.; Prieto-Ballesteros, O.; Sobrado, J. M.; Gómez-Elvira, J. and Martín-Gago, J. A. 2006. “A chamber for studying planetary environments and its applications to astrobiology”. <strong><em>Measurement and Science Technology</em> </strong>17, 2274-2280.</p> <p>2.- E. Mateo-Marti*, S. Galvez-Martinez, C. Gil-Lozano and María-Paz Zorzano. “Pyrite-induced uv-photocatalytic abiotic nitrogen fixation: implications for early atmospheres and Life”.<strong> </strong><strong>Scientific reports</strong>  9: 15311-1--9 (2019).</p> <p>3.- E. J. Cueto Díaz, S. Galvez-Martinez, Mª C.Torquemada Vico, M. P. Valles González and E. Mateo-Marti*. ”2-D organization of silica nanoparticles on gold surfaces: CO<sub>2</sub> marker detection and storage”. <strong>RSC Advances</strong>,<strong> </strong>10, 31758 (2020).</p> <p>4.- C. Gil‑Lozano*, A. G. Fairén*, V.Muñoz‑Iglesias, M. Fernández‑Sampedro, O. Prieto‑Ballesteros, L. Gago‑Duport, E.Losa‑Adams, D.Carrizo, Janice L. Bishop, T.Fornaro and E. Mateo-Marti<strong> </strong>“Constraining the preservation of organic compounds in Mars analog nontronites after exposure to acid and alkaline fluids”<strong> </strong><strong>Scientific reports,</strong>  20, 71657-9 (2020).</p> <p>5.- Zorzano, M. P.; Mateo-Martí, E.; Prieto-Ballesteros, O.; Osuna, S. and Renno, N. 2009. “The stability of liquid saline water on present day Mars”.<em> <strong>Geophys. Res. Lett.</strong></em><strong> </strong> 36, L20201.</p> <p>6.- Gomez, F., Mateo-Martı´, E., Prieto-Ballesteros, O., Martın-Gago, J.A., Amils, R., 2010. “Protection of chemolithoautotrophic bacteria exposed to simulated mars environmental conditions”. <strong>Icarus</strong> 209, 482–487.</p>

2014 ◽  
Vol 70 (12) ◽  
pp. 2040-2046 ◽  
Author(s):  
L. Chekli ◽  
S. Phuntsho ◽  
L. D. Tijing ◽  
J. L. Zhou ◽  
J.-H. Kim ◽  
...  

Manufactured nanoparticles (MNPs) are increasingly released into the environment and thus research on their fate and behaviour in complex environmental samples is urgently needed. The fate of MNPs in the aquatic environment will mainly depend on the physico-chemical characteristics of the medium. The presence and concentration of natural organic matter (NOM) will play a significant role on the stability of MNPs by either decreasing or exacerbating the aggregation phenomenon. In this study, we firstly investigated the effect of NOM concentration on the aggregation behaviour of manufactured Fe-oxide nanoparticles. Then, the stability of the coated nanoparticles was assessed under relevant environmental conditions. Flow field-flow fractionation, an emerging method which is gaining popularity in the field of nanotechnology, has been employed and results have been compared to another size-measurement technique to provide increased confidence in the outcomes. Results showed enhanced stability when the nanoparticles are coated with NOM, which was due to electrosteric stabilisation. However, the presence of divalent cations, even at low concentration (i.e. less than 1 mM) was found to induce aggregation of NOM-coated nanoparticles via bridging mechanisms between NOM and Ca2+.


2020 ◽  
Author(s):  
Hugo Moors ◽  
Miroslav Honty ◽  
Carla Smolders ◽  
Ann Provoost ◽  
Mieke De Craen ◽  
...  

<p>The geological extreme Dallol region, located around the Dallol volcano in the north-east of Danakil depression (Ethiopia), is considered as one of the harshest and hottest places on Earth. The geology is made up of years and years of evaporates accumulation. Volcanic activity generates ascending brines that may cross and mix with aquifers from inflowing meteoric water originating from the Ethiopian highlands on the east of the Danakil depression. When these mixtures reach the surface they can generate hydrothermal springs giving rise to waterbodies in the form of small ponds or lakes. During the Europlanet 2018 Danakil field expedition, ten of these saline waterbodies were extensively studied by <em>in situ</em> measurements and <em>ex situ</em> geo–physico-chemical and –microbiological analyses of collected samples, liquids as well as sediments.</p><p>The <em>in situ</em> physico-chemical measurements clearly indicated the extreme nature of all ten investigated lakes. Laboratory analyses of the collected batch samples of liquids and sediments confirmed the extreme character of the waterbodies and complements our geological survey of the region with valuable geo–chemical and –microbiological data.</p><p>Based on our analytical results, the relative small Dallol region can still be subdivided into three geological smaller areas: the outcrop zone, the volcanic base region and the distant south area. The outcrop zone is dominated by sodium, iron and potassium. Oxidation processes in the outflowing superheated ferrous and sulfidic rich brine give rise to some of the most acidic ponds on our planet. In the ponds and lakes of the volcanic base region, incredible high amounts of calcium and/or magnesium can remain in their dissolved form as the most dominant and quasi only available anion is chloride. This region is host for the most saline water body on Earth. Chemical analysis of the lakes of the distant south area show that sodium is by far the most dominant cation. It is therefore no surprise that the large Karum Lake in the south region is economically exploited for the mining of sodium chloride.</p><p>Our mineralogy analyses render results that are completely in line with the observed geochemistry of the waterbodies. Halite and sylvite are the most present minerals in the Dallol outcrop zone associated with some gypsum and in one case with anhydrite. The geology around the waterbodies of volcanic base zone are a little bit more divers. On the shores of the Gaet’ale Pond tachyhydrite, chloromagnesite, halite and sylvite is determined, while the Black Lake is surrounded by bischofite and carnalite. Logically, the mineralogy of the south area, the salt mining area, is dominated by halite and sylvite.</p><p>Apparently, the geochemistry of the outcrop zone and volcanic base region is so harsh that no extremophilic organism is able to survive in these areas. Only in the distant south area did we find indications of the presence of halophiles. Besides the bacterial genus <em>Salinibacter</em>, our 16S rDNA microbiological fingerprinting indicates the presence of halophilic archaea like:  <em>Halobaculum sp., Halobellus sp., Halomicroarcula sp., Halorientalis sp.</em> with the majority of the population being <em>Candidatus Nanosalina sp</em>.</p>


Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 351
Author(s):  
Yannick Fleury

The range of environmental conditions in marine life is tremendous at different physico-chemical criteria (temperature, light, pressure and salinity) [...]


2021 ◽  
pp. 118250
Author(s):  
Hamed Peidayesh ◽  
Abolfazl Heydari ◽  
Katarína Mosnáčková ◽  
Ivan Chodák

2019 ◽  
Vol 12 (4) ◽  
pp. 1-33 ◽  
Author(s):  
Telmo Adão ◽  
Luís Pádua ◽  
David Narciso ◽  
Joaquim João Sousa ◽  
Luís Agrellos ◽  
...  

MixAR, a full-stack system capable of providing visualization of virtual reconstructions seamlessly integrated in the real scene (e.g. upon ruins), with the possibility of being freely explored by visitors, in situ, is presented in this article. In addition to its ability to operate with several tracking approaches to be able to deal with a wide variety of environmental conditions, MixAR system also implements an extended environment feature that provides visitors with an insight on surrounding points-of-interest for visitation during mixed reality experiences (positional rough tracking). A procedural modelling tool mainstreams augmentation models production. Tests carried out with participants to ascertain comfort, satisfaction and presence/immersion based on an in-field MR experience and respective results are also presented. Ease to adapt to the experience, desire to see the system in museums and a raised curiosity and motivation contributed as positive points for evaluation. In what regards to sickness and comfort, the lowest number of complaints seems to be satisfactory. Models' illumination/re-lightning must be addressed in the future to improve the user's engagement with the experiences provided by the MixAR system.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


2011 ◽  
Vol 17 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Nada Babovic ◽  
Dejan Markovic ◽  
Vojkan Dimitrijevic ◽  
Dragan Markovic

This paper shows the results obtained in field analysis performed at the Tamis River, starting from the settlement Jasa Tomic - border between Serbia and Romania to Pancevo - confluence of Tamis into the Danube. The Tamis is a 359 km long river rising in the southern Carpathian Mountains. It flows through the Banat region and flows into the Danube near Pancevo. During the years the water quality of the river has severely deteriorated and badly affected the environment and the river ecosystem. In situ measurements enabled determination of physico-chemical parameters of water quality of the Tamis River on every 400 m of the watercourse, such as: water temperature, pH value, electrical conductivity, contents of dissolved oxygen and oxygen saturation. The main reason of higher pollution of Tamis is seen in connection to DTD hydro system. Sampling was performed at 7 points with regard to color, turbidity, total hardness, alkalinity, concentration of ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, iron, chlorides and sulphates in samples. The aim of the present work was to evaluate water quality in the Tamis River taking into account significant pollution, which originates from settlements, industry and agriculture, and to suggest appropriate preventive measures to further pollution decreasing of the river's water.


Sign in / Sign up

Export Citation Format

Share Document