scholarly journals Prediction of source contributions to urban background PM<sub>10</sub> concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0 – Part 1: The country contributions

2020 ◽  
Vol 13 (4) ◽  
pp. 1787-1807 ◽  
Author(s):  
Matthieu Pommier ◽  
Hilde Fagerli ◽  
Michael Schulz ◽  
Alvaro Valdebenito ◽  
Richard Kranenburg ◽  
...  

Abstract. A large fraction of the urban population in Europe is exposed to particulate matter levels above the WHO guideline value. To make more effective mitigation strategies, it is important to understand the influence on particulate matter (PM) from pollutants emitted in different European nations. In this study, we evaluate a country source contribution forecasting system aimed at assessing the domestic and transboundary contributions to PM in major European cities for an episode in December 2016. The system is composed of two models (EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0), which allows the consideration of differences in the source attribution. We also compared the PM10 concentrations, and both models present satisfactory agreement in the 4 d forecasts of the surface concentrations, since the hourly concentrations can be highly correlated with in situ observations. The correlation coefficients reach values of up to 0.58 for LOTOS-EUROS and 0.50 for EMEP for the urban stations; the values are 0.58 for LOTOS-EUROS and 0.72 for EMEP for the rural stations. However, the models underpredict the highest hourly concentrations measured by the urban stations (mean underestimation of 36 %), which is to be expected given the relatively coarse model resolution used (0.25∘ longitude × 0.125∘ latitude). For the source attribution calculations, LOTOS-EUROS uses a labelling technique, while the EMEP/MSC-W model uses a scenario having reduced anthropogenic emissions, and then it is compared to a reference run where no changes are applied. Different percentages (5 %, 15 %, and 50 %) for the reduced emissions in the EMEP/MSC-W model were used to test the robustness of the methodology. The impact of the different ways to define the urban area for the studied cities was also investigated (i.e. one model grid cell, nine grid cells, and grid cells covering the definition given by the Global Administrative Areas – GADM). We found that the combination of a 15 % emission reduction and a larger domain (nine grid cells or GADM) helps to preserve the linearity between emission and concentrations changes. The nonlinearity, related to the emission reduction scenario used, is suggested by the nature of the mismatch between the total concentration and the sum of the concentrations from different calculated sources. Even limited, this nonlinearity is observed in the NO3-, NH4+, and H2O concentrations, which is related to gas–aerosol partitioning of the species. The use of a 15 % emission reduction and of a larger city domain also causes better agreement on the determination of the main country contributors between both country source calculations. Over the 34 European cities investigated, PM10 was dominated by domestic emissions for the studied episode (1–9 December 2016). The two models generally agree on the dominant external country contributor (68 % on an hourly basis) to PM10 concentrations. Overall, 75 % of the hourly predicted PM10 concentrations of both models have the same top five main country contributors. Better agreement on the dominant country contributor for primary (emitted) species (70 % is found for primary organic matter (POM) and 80 % for elemental carbon – EC) than for the inorganic secondary component of the aerosol (50 %), which is predictable due to the conceptual differences in the source attribution used by both models. The country contribution calculated by the scenario approach depends on the chemical regime, which largely impacts the secondary components, unlike the calculation using the labelling approach.

2019 ◽  
Author(s):  
Matthieu Pommier ◽  
Hilde Fagerli ◽  
Michael Schulz ◽  
Alvaro Valdebenito ◽  
Richard Kranenburg ◽  
...  

Abstract. A large fraction of the urban population in Europe is exposed to particulate matter levels above the WHO guideline. To make more effective mitigation strategies, it is important to understand the influence on particulate matter (PM) from pollutants emitted in different European nations. In this study, we evaluate a source apportionment forecasting system aimed to assess the domestic and transboundary contributions to PM in major European cities for an episode in December 2016. The system is composed of two models (EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0) which allows to consider differences in the source attribution. We also compared the PM10 concentrations and both models present satisfactory agreement in the 4day-forecasts of the surface concentrations, since the hourly concentrations can be highly correlated with in-situ observations. The correlation coefficients reach values up to 0.58 for LOTOS-EUROS and 0.50 for EMEP for the urban stations; and 0.58 for LOTOS-EUROS and 0.72 for EMEP for the rural stations. However, the models under-predict the highest hourly concentrations measured by the urban stations (mean underestimation by 36 %), predictable with the relatively coarse model resolution used (0.25° longitude × 0.125° latitude). For the source receptor calculations, the EMEP/MSC-W model uses a scenario having reduced anthropogenic emissions and then it is compared to a reference run where no changes are applied. Different percentages (5 %, 15 % and 50 %) in the reduced emissions were used to test the robustness of the methodology. The impact of the different ways to define the urban area for the studied cities was also investigated (i.e. 1 model grid cell, 9 grid cells and the grid cells covering the definition given by the Global Administrative Area – GADM). We found that by combining the use of the 15 % factor and of a larger domain for the city edges (9 grid cells or GADM), it helps to reduce the impact of non-linearity on the chemistry which is seen in the mismatch between the total concentration and the sum of the concentrations from different calculated sources. Even limited, this non-linearity is observed in the NO3−, NH4+ and H2O concentrations, which is related to gas-aerosol partitioning of the species. The use of a 15 % factor and of a larger city domain also gives a better agreement in the determination of the main country contributors between both country source receptor calculations. During the studied episode, dominated by the influence of the domestic emissions for the 34 European cities investigated and occurring from December 01st to 09th 2016, the two models agree 68 % of the time (on hourly resolution) on the country, having been the dominant contributor to PM10 concentrations. 75 % of the hourly predicted PM10 concentrations by both models, have the same top 5 main country contributors. Better results are found in the determination the dominant country contributor for the primary component (70 % for POM and 80 % for EC) than for the secondary inorganic aerosols (50 %).


2020 ◽  
Author(s):  
Matthieu Pommier

Abstract. Despite the progress made in the latest decades, air pollution is still the primary environmental cause of premature death in Europe. The urban population risks more likely to suffer to pollution related to high concentrations of air pollutants such as in particulate matter smaller than 10 µm (PM10). Since the composition of these particulates varies with space and time, the understanding of the origin is essential to determine the most efficient control strategies. A source contribution calculation allows to provide such information and thus to determine the geographical location of the sources (e.g. city or country) responsible for the air pollution episodes. In this study, the calculations provided by the regional EMEP/MSC-W rv4.15 model in a forecast mode, with a 0.25° longitude × 0.125° latitude resolution, and based on a scenario approach, have been explored. To do so, the work has focused on event occurring between 01 and 09 December 2016. This source contribution calculation aims at quantifying over 34 European cities the Local contribution of these PM10, i.e. from the city itself, on an hourly basis. Since the methodology used in the model is based on reduced anthropogenic emissions, compared to a reference run, the choice of the percentage in the reductions has been tested by using three different values (5 %, 15 % and 50 %). The definition of the Local contribution, and thus the definition of the area defining the cities is also an important parameter. The impact of the definition of these urban areas, for the studied cities, was investigated (i.e. 1 model grid cell, 9 grid cells and the grid cells covering the definition given by the Global Administrative Area – GADM). Using a 15 % reduction in the emission and the use of larger cities for our source contribution calculation (e.g. 9 grid cells and GADM), help to reduce the non-linearity in the concentration changes. This non-linearity is observed in the mismatch between the total concentration and the sum of the concentrations from different calculated sources. When this non-linearity is observed, it impacts the NO3−, NH4+ and H2O concentrations. However, the mean non-linearity represents only less than 2 % of the total modelled PM10 calculated by the system. During the studied episode, it was found that 20 % of the predicted PM10 had a Local origin, essentially composed of primary components. 60 % of the hourly PM10 concentrations predicted by the model came from the countries in the regional domain, and they were essentially composed of NO3−. The rest of the PM10 was mainly due to natural sources. It was also shown that the Central European cities were mainly impacted by the surrounding countries while the cities located a little away from the rest of the other European countries (e.g. Oslo and Lisbon) had larger Local contribution. The usefulness of the forecasting tool has also been illustrated with an example in Paris, since the system has been able to predict a local polluted event on 02 December 2016 as documented by local authorities.


2021 ◽  
Vol 14 (6) ◽  
pp. 4143-4158
Author(s):  
Matthieu Pommier

Abstract. Despite the progress made in the latest decades, air pollution is still the primary environmental cause of premature death in Europe. The urban population risks more likely to suffer to pollution related to high concentrations of air pollutants, such as in particulate matter smaller than 10 µm (PM10). Since the composition of these particulates varies with space and time, the understanding of the origin is essential to determine the most efficient control strategies. A source contribution calculation allows us to provide such information and thus to determine the geographical location of the sources (e.g. city or country) responsible for the air pollution episodes. In this study, the calculations provided by the regional European Monitoring and Evaluation Programme/Meteorological Synthesizing Centre – West (EMEP/MSC-W) rv4.15 model in a forecast mode, with a 0.25∘ longitude × 0.125∘ latitude resolution, and based on a scenario approach, have been explored. To do so, the work has focused on event occurring between 1 and 9 December 2016. This source contribution calculation aims at quantifying over 34 European cities, the “city” contribution of these PM10, i.e. from the city itself, on an hourly basis. Since the methodology used in the model is based on reduced anthropogenic emissions, compared to a reference run, the choice of the percentage in the reductions has been tested by using three different values (5 %, 15 %, and 50 %). The definition of the “city” contribution, and thus the definition of the area defining the cities is also an important parameter. The impact of the definition of these urban areas, for the studied cities, was investigated (i.e. one model grid cell, nine grid cells and the grid cells covering the definition given by the global administrative area – GADM). Using a 15 % reduction in the emission and larger cities for our source contribution calculation (e.g. nine grid cells and GADM) helps to reduce the non-linearity in the concentration changes. This non-linearity is observed in the mismatch between the total concentration and the sum of the concentrations from different calculated sources. When this non-linearity is observed, it impacts the NO3-, NH4+, and H2O concentrations. However, the mean non-linearity represents only less than 2 % of the total modelled PM10 calculated by the system. During the studied episode, it was found that 20 % of the surface predicted PM10 had been from the “city”, essentially composed of primary components. In total, 60 % of the hourly PM10 concentrations predicted by the model came from the countries in the regional domain, and they were essentially composed of NO3- (by ∼ 35  %). The two other secondary inorganic aerosols are also important components of this “rest of Europe” contribution, since SO42- and NH4+ represent together almost 30 % of this contribution. The rest of the PM10 was mainly due to natural sources. It was also shown that the central European cities were mainly impacted by the surrounding countries while the cities located a bit away from the rest of the other European countries (e.g. Oslo and Lisbon) had larger “city” contributions. The usefulness of the forecasting tool has also been illustrated with an example in Paris, since the system has been able to predict the primary sources of a local polluted event on 1–2 December 2016, as documented by local authorities.


2021 ◽  
Author(s):  
Shruti Choudhary ◽  
Michael J Durkin ◽  
Daniel C Stoeckel ◽  
Heidi M Steinkamp ◽  
Martin H Thornhill ◽  
...  

Objectives: To determine the impact of various aerosol mitigation interventions and establish duration of aerosol persistence in a variety of dental clinic configurations. Methods: We performed aerosol measurement studies in endodontic, orthodontic, periodontic, pediatric, and general dentistry clinics. We used an optical aerosol spectrometer and wearable particulate matter sensors to measure real-time aerosol concentration from the vantage point of the dentist during routine care in a variety of clinic configurations (e.g, open bay, single room, partitioned operatories). We compared the impact of aerosol mitigation strategies [ventilation and high-volume evacuation (HVE)] and prevalence of particulate matter in the dental clinic environment before, during and after high-speed drilling, slow speed drilling and ultrasonic scaling procedures. Results: Conical and ISOVAC HVE were superior to standard tip evacuation for aerosol-generating procedures. When aerosols were detected in the environment, they were rapidly dispersed within minutes of completing the aerosol-generating procedure. Few aerosols were detected in dental clinics, regardless of configuration, when conical and ISOVAC HVE were used. Conclusions: Dentists should consider using conical or ISOVAC HVE rather than standard tip evacuators to reduce aerosols generated during routine clinical practice. Furthermore, when such effective aerosol mitigation strategies are employed, dentists need not leave dental chairs fallow between patients as aerosols are rapidly dispersed. Clinical Significance: ISOVAC HVE is highly effective in reducing aerosol emissions. With adequate ventilation and HVE use, dental fallow time can be reduced to 5 minutes.


2018 ◽  
Author(s):  
Xing Peng ◽  
Jian Gao ◽  
Guoliang Shi ◽  
Xurong Shi ◽  
Yanqi Huangfu ◽  
...  

Abstract. Time series of pollutant concentrations consist of variations at different time scales that are attributable to many processes/sources (data noise, source intensities, meteorological conditions, climate, etc.). Improving the knowledge of the impact of multiple temporal-scale components on pollutant variations and pollution levels can provide useful information for suitable mitigation strategies for pollutant control during a high pollution episode. To investigate the source factors driving these variations, the Kolmogorov-Zurbenko (KZ) filter was used to decompose the time series of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) and chemical species into intra-day, diurnal, synoptic, and baseline temporal-scale components (TS components). The synoptic TS component has the largest amplitude and relative contributions (about 50 %) to the total variance of SO42−, NH4+, and OC concentrations. The diurnal TS component has the largest relative contributions to the total variance of PM2.5, NO3−, EC, Ca, and Fe concentrations, ranging from 32 % to 47 %. To investigate the source impacts on PM2.5 from different TS components, four datasets RI (intra-day removed), RD (diurnal removed), RS (synoptic removed), and RBL (baseline removed) were created by respectively removing the intra-day, diurnal, synoptic, and baseline TS component from the original datasets. Multilinear Engine 2 (ME-2) and/or principal component analysis was applied to these four datasets as well as the original datasets for source apportionment. ME-2 solutions using the original and RI dataset identify crustal dust contributions. For the solutions from original, RI, RD, and RS datasets, the total primary source impacts are close, ranging from 35.1 to 40.4 μg m−3 during the entire sampling period. For the secondary source impacts, solutions from the original, RI and RD dataset give similar source impacts (about 30 μg m−3), which were higher than the impacts derived from the RS datasets (21.2 μg m−3).


2020 ◽  
Author(s):  
Sylvia Akpene Takyi ◽  
Nil Basu ◽  
John Arko-Mensah ◽  
Paul Botwe ◽  
Afua Asabea Amoabeng Nti ◽  
...  

Abstract Background: Informal recycling of electronic waste (e-waste) releases particulate matter (PM) into the ambient air. Human exposure to PM has been reported to induce adverse effects on cardiovascular health. However, the impact of PM on the cardiovascular health of e-waste recyclers in Ghana has not been studied. Although intake of micronutrient-rich diet is known to modify these PM-induced adverse health effects, no data are available on the relationship between micronutrient status of e-waste recyclers and the reported high-level exposure to PM.Objectives: We investigated whether intake of micronutrient-rich diets ameliorates the adverse effects of ambient exposure to PM2.5 on blood pressure (BP).Methods: This study was conducted from March 2017 to October 2018; involving the measurement of breathing zone PM2.5 using real-time monitor. Dietary micronutrient (Fe, Ca, Mg, Se, Zn, and Cu) intake was assessed using a 2-day 24-hour recall, whiles cardiovascular indices such as systolic BP (SBP) and diastolic BP (DBP) and pulse pressure (PP) were measured using a sphygmomanometer. Ordinary least-squares regression models were used to estimate the joint effects of ambient exposure to PM2.5 and dietary micronutrient intake on cardiovascular health outcomes. The results: Fe was consumed in adequate quantities. However, Ca, Se, Zn, Mg, and Cu were inadequately consumed among e-waste recyclers and controls. Dietary Ca and Fe intake were associated with reduced SBP and PP of e-waste recyclers. Although PM2.5 levels were higher in e-waste recyclers, the controls exceeded the WHO 24-hour guideline value (25µg/m3). Exposure to 1µg/m3 of PM2.5 was associated with increased HR of e-waste recyclers by 0.06 bpm; implying informal recycling of e-waste may be a risk factor for tachycardia. Also, dietary Fe intake was associated with a reduction in systolic blood pressure levels of e-waste recyclers.Conclusions: Consistent adequate dietary Fe intake was associated with reduced effects of PM2.5 on SBP of e-waste recyclers overtime. However, as all other micronutrients are essential in ameliorating adverse effects of PM on cardiovascular health, nutrition-related policy dialogues are necessary to educate informal e-waste recyclers and the general population on specific nutrients of concern and their impact on the exposure to ambient air pollutants.


2008 ◽  
Vol 136 (9) ◽  
pp. 3597-3607 ◽  
Author(s):  
P. Goswami ◽  
J. Baruah

Abstract The massive growth in the size and the population of cities over the past few decades has led to serious deterioration in the quality of air. One of the important constituents of airborne pollutants, which is a major health hazard, is suspended particulate matter (SPM). SPM is also an important source of cloud condensation nuclei; accurate simulations of SPM with sufficiently long lead thus have many applications, from issuing health advisories to forecasting fog. One of the biggest challenges in modeling air pollution in general and SPM in particular is to identify and mathematically represent the (location specific) sources and sinks. In this study the authors present a dynamical model for daily values of SPM over Delhi, India. The meteorological parameters are taken from the daily values from NCEP reanalysis. The validation is carried out against observations generated by the Central Pollution Control Board (CPCB) in India for the period 2000–05. Error statistics show that the model can capture a significant part of the observed variability of SPM. An evaluation of the relative contributions of various sources show that while vehicular pollution accounts for a large fraction of the SPM throughout the year, steep increases in the winter and the premonsoon periods are accounted for by fossil fuel burning and wind blown dust, respectively. Simulation with a doubling scenario for traffic congestion shows the effect to have strong seasonality. Such a model can be also interfaced with a seasonal forecast model or a climate model for enhanced scope of seasonal forecasts or for an investigation of the impact of SPM on regional climate change.


2015 ◽  
Vol 15 (16) ◽  
pp. 9693-9709 ◽  
Author(s):  
A. Retama ◽  
D. Baumgardner ◽  
G. B. Raga ◽  
G. R. McMeeking ◽  
J. W. Walker

Abstract. The Mexico City metropolitan area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short-lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e., ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown a less positive response to mitigation strategies that have been in place for almost 3 decades. For the first time, extended measurements of equivalent black carbon (eBC), derived from light absorption measurements, have been made using a Photoacoustic Extinctiometer (PAX) over a 13 month period from March 2013 through March 2014. The daily trends in workdays (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in the MCMA: rainy, cold and dry and warm and dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P < 0.05) during the dry periods than in the rainy season. The changes from rainy to dry seasons for eBC, PM2.5, CO, O3 and NOx were 8.8 to 13.1 μg m−3 (40 %), 49 to 73 μg m−3 (40 %), 2.5 to 3.8 ppm (40 %), 73 to 100 ppb (30 %) and 144 to 252 ppb (53 %), respectively. The primary factors that lead to these large changes between the wet and dry seasons are the accelerated vertical mixing of boundary layer and free tropospheric air by the formation of clouds that dilutes the concentration of the SLCPs, the decreased actinic flux that reduces the production of ozone by photochemical reactions and the heavy, almost daily rain that removes particulate matter. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel, which produces a large fraction of the BC. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum values from workdays to Sundays. This lack of change is a result of the balancing effects of lower precursor gases, i.e., VOCs, offset by lower concentrations of NOx, that is an O3 inhibitor. A comparison of the average maximum value of eBC measured during the 1 year period of the current study, with maximum values measured in shorter field campaigns in 2000 and 2006, shows no significant change in the eBC emissions over a 14 year period. This suggests that new methods may need to be developed that can decrease potentially toxic levels of this particulate pollutant.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
SV Yarushin ◽  
DV Kuzmin ◽  
AA Shevchik ◽  
TM Tsepilova ◽  
VB Gurvich ◽  
...  

Introduction: Key issues of assessing effectiveness and economic efficiency of implementing the Federal Clean Air Project by public health criteria are considered based on the example of the Comprehensive Emission Reduction Action Plan realized in the city of Nizhny Tagil, Sverdlovsk Region. Materials and methods: We elaborated method approaches and reviewed practical aspects of evaluating measures taken in 2018–2019 at key urban industrial enterprises accounting for 95 % of stationary source emissions. Results: Summary calculations of ambient air pollution and carcinogenic and non-carcinogenic inhalation health risks including residual risks, evaluation of the impact of air quality on urban mortality and morbidity rates, economic assessment of prevented morbidity and premature mortality cases have enabled us not only to estimate health effects but also to develop guidelines for development and implementation of actions aimed at enhancing effectiveness and efficiency of industrial emission reduction in terms of health promotion of the local population. Conclusions: We substantiate proposals for the necessity and sufficiency of taking remedial actions ensuring achievement of acceptable health risk levels as targets of the Comprehensive Emission Reduction Action Plan in Nizhny Tagil until 2024 and beyond.


Sign in / Sign up

Export Citation Format

Share Document