scholarly journals Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data

2011 ◽  
Vol 8 (1) ◽  
pp. 1287-1327 ◽  
Author(s):  
M. Otto ◽  
D. Scherer ◽  
J. Richters

Abstract. High Altitude Wetlands of the Andes (HAWA) are unique types of wetlands within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV) indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 11 000 km2 situated in the Northwest of Lake Titicaca. The multi temporal classification method used Normalized Differenced Vegetation Index (NDVI) and Normalized Differenced Infrared Index (NDII) data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000) and at the end of austral summer (May 2001). The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6%). Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses on the reletation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43) and MODIS Eight Day Maximum Snow Extent data (MOD10A2) from 2000 to 2010. We found HAWA subtype specific dependencies to precipitation conditions. Strong relation exists between perennial HAWA and snow fall (r2: 0.82) in dry austral winter months (June to August) and between temporal HAWA and precipitation (r2: 0.75) during austral summer (March to May). Annual spatial patterns of perennial HAWA indicated spatial alteration of water supply for PAV up to several hundred metres at a single HAWA site.

2011 ◽  
Vol 15 (5) ◽  
pp. 1713-1727 ◽  
Author(s):  
M. Otto ◽  
D. Scherer ◽  
J. Richters

Abstract. High Altitude Wetlands of the Andes (HAWA) belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV) indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI) and Normalized Differenced Infrared Index (NDII) data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000) and at the end of austral summer (May 2001). The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %). Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43) and MODIS Eight Day Maximum Snow Extent data (MOD10A2) from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82) in dry austral winter months (June to August) and between temporal HAWA and precipitation (r2: 0.75) during austral summer (March to May). Annual changes in spatial extend of perennial HAWA indicate alterations in annual water supply generated from snow melt.


Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. Kämpf

Abstract. Satellite-derived chlorophyll a data using the standard NASA-OC3 (ocean colour) algorithm are strongly biased by coloured dissolved organic matter and suspended sediment of river discharges, which is a particular problem for the western Tasmanian shelf. This work reconstructs phytoplankton blooms in the study region using a quadratic regression between OC3 data and chlorophyll fluorescence based on the fluorescence line height (FLH) data. This regression is derived from satellite data of the nearby Bonney upwelling region, which is devoid of river influences. To this end, analyses of 10 years of MODIS-aqua satellite data reveal the existence of a highly productive ecosystem on the western Tasmanian shelf. The region normally experiences two phytoplankton blooms per annum. The first bloom occurs during late austral summer months as a consequence of upwelling-favourable coastal winds. Hence, the western Tasmanian shelf forms a previously unknown upwelling centre of the regional upwelling system, known as Great South Australian Coastal Upwelling System. The second phytoplankton bloom is a classical spring bloom also developing in the adjacent Tasman Sea. The author postulates that this region forms another important biological hot spot for the regional marine ecosystem.


2019 ◽  
Vol 40 (6) ◽  
pp. 305
Author(s):  
David Israel Garrido-Salazar ◽  
Santiago Moisés Garrido-Salazar ◽  
Gina Vivas-Armas

OBJECTIVE: To establish the frequency of anemia among children living in the Andean region of Ecuador, Perú, and Bolivia.MATERIALS AND METHODS: A transversal descriptive study based on the risk association of anemia in children between 6 and 59 months living in the Andean region, through a secondary source published by institutions of health from Ecuador, Peru and Bolivia.RESULTS: A total of 155,007 children were included; 65,161 living in the Andean region. Anemia was observed in 46.69 to 60.59% in the Andes of Ecuador, Peru, and Bolivia. Opposing, in low-lying regions varied from 33.96 to 43.37%. Anemia was more prevalent in the high altitude, regarding to severe anemia, the risk association was significant in Andean Region of Ecuador during 2013 (OR:4.98; p<0.01) and 2014 (OR:5.32; p<0.01), Bolivia (OR:4.65; p<0.01), and Peru (OR:1.78; p<0.01).CONCLUSIONS: A higher frequency of anemia was evident in children residing in the Andean region of Ecuador, Peru, and Bolivia. However, although a significant risk association was demonstrated, this could be a multifactorial phenomenon that requires more detailed investigation. 


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1204
Author(s):  
Dibas Shrestha ◽  
Shankar Sharma ◽  
Rocky Talchabhadel ◽  
Rashila Deshar ◽  
Kalpana Hamal ◽  
...  

Topography has an important role in shaping regional and global climate systems, as it acts as a mechanical barrier to the low-level moisture flow. Thus, a complex spatial pattern of rainfall can exist over the mountainous region. Moreover, it is critical to advance our understanding of the relationship between rainfall and topography in terms of rainfall timing, frequency, and magnitude. In this study, characteristics of austral summer (December–February) precipitation are analyzed using 17-year (1998–2014) high-spatial-resolution (0.05° × 0.05°) data obtained from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) over the Andean region focusing on topographic impact. We observe an interaction between precipitation patterns and topography, with clear precipitation–elevation relationships in the Andes regions. The rainfall maxima zone was observed over the higher terrain of the central and southern Andes, and the zone is attributed to frequency and intensity of rainfall, respectively. In the foothills of the central Andes, we find there was a persistent rain system when a moist, low-level flow was lifted due to topography. In contrast, steep mountain slopes and a relatively dry atmosphere modulate deep convection in the foothills of southern Andes.


2021 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Salman Qureshi ◽  
Javad Koohpayma ◽  
Mohammad Karimi Firozjaei ◽  
Ata Abdollahi Kakroodi

The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) are the most important and widely used data sources in several applications—e.g., forecasting drought and flood, and managing water resources—especially in the areas with sparse or no other robust sources. This study explored the accuracy and precision of satellite data products over a span of 18 years (2000–2017) using synoptic ground station data for three regions in Iran with different climates, namely (a) humid and high rainfall, (b) semi-arid, and (c) arid. The results show that the monthly precipitation products of GPM and TRMM overestimate the rainfall. On average, they overestimated the precipitation amount by 11% in humid, by 50% in semi-arid, and by 43% in arid climate conditions compared to the ground-based data. This study also evaluated the satellite data accuracy in drought and wet conditions based on the standardized precipitation index (SPI) and different seasons. The results showed that the accuracy of satellite data varies significantly under drought, wet, and normal conditions and different timescales, being lowest under drought conditions, especially in arid regions. The highest accuracy was obtained on the 12-month timescale and the lowest on the 3-month timescale. Although the accuracy of the data is dependent on the season, the seasonal effects depend on climatic conditions.


Author(s):  
Salman Qureshi ◽  
Javad Koohpayma ◽  
Mohammad Karimi Firozjaei ◽  
Ata Abdollahi Kakroodi

Abstract: The Tropical Rainfall Measuring Mission (TRMM) and then Global Precipitation Mission (GPM) are the most important and widely used data sources in the forecasting of drought, flood, and water resources management. However, since this sensor&rsquo;s data is primarily used for tropical regions, it is necessary to evaluate the accuracy for optimal use of the data across varying climatic and physiographic conditions. In this study, the accuracy of the satellite data for a span of 17 years (2000-2017) for three climatic zones has been explored using synoptic ground station data. The climates include a) arid and low rainfall, b) semi-arid and low rainfall, and c) humid and high rainfall. We evaluated satellite data accuracy in drought and wet conditions based on the Standard Precipitation Index (S.P.I.) and different seasons. For available ground control stations, 13 stations were used in the humid, seven stations in a semi-arid climate, and 12 stations in the dry climate. The results show that the monthly precipitation product of GPM (IMERG product) and TRMM (TMPA/3B43 product) overestimate the rainfall. In the arid climate, the precipitation is estimated 43%, in the semi-arid environment 50%, and in the humid weather 11% more than the ground-based data on average. Therefore, to use satellite data in different climates, it is necessary to make corrections to obtain precise results. Based on 32 ground stations, the correction coefficient has a positive relationship with average precipitation and altitude and an inverse relationship with the latitude. Further in-depth investigations showed that the accuracy of satellite data in wet conditions is higher than the accuracy of normal circumstances, and the accuracy of normal conditions is more accurate than drought conditions. Besides, the accuracy of satellite data in wet or dry conditions increases with increasing time scales. The highest accuracy was obtained for a 12-month time scale and the lowest accuracy for the 3-month time scale of drought conditions in the arid climate.


Author(s):  
Chibuike Chiedozie Ibebuchi

AbstractAtmospheric circulation is a vital process in the transport of heat, moisture, and pollutants around the globe. The variability of rainfall depends to some extent on the atmospheric circulation. This paper investigates synoptic situations in southern Africa that can be associated with wet days and dry days in Free State, South Africa, in addition to the underlying dynamics. Principal component analysis was applied to the T-mode matrix (variable is time series and observation is grid points at which the field was observed) of daily mean sea level pressure field from 1979 to 2018 in classifying the circulation patterns in southern Africa. 18 circulation types (CTs) were classified in the study region. From the linkage of the CTs to the observed rainfall data, from 11 stations in Free State, it was found that dominant austral winter and late austral autumn CTs have a higher probability of being associated with dry days in Free State. Dominant austral summer and late austral spring CTs were found to have a higher probability of being associated with wet days in Free State. Cyclonic/anti-cyclonic activity over the southwest Indian Ocean, explained to a good extent, the inter-seasonal variability of rainfall in Free State. The synoptic state associated with a stronger anti-cyclonic circulation at the western branch of the South Indian Ocean high-pressure, during austral summer, leading to enhanced low-level moisture transport by southeast winds was found to have the highest probability of being associated with above-average rainfall in most regions in Free State. On the other hand, the synoptic state associated with enhanced transport of cold dry air, by the extratropical westerlies, was found to have the highest probability of being associated with (winter) dryness in Free State.


1975 ◽  
Vol 14 (70) ◽  
pp. 155-170 ◽  
Author(s):  
Cesar N. Caviedes ◽  
Roland Paskoff

The extension of the Quaternary glaciations has been studied in the semi-arid Andes of north-central Chile, where the glacial modelling is striking. In the Elqui valley (lat. 30°S.), two glacial advances were identified reaching down to 3 100 m (Laguna glaciation) and 2 500 m (Tapado glaciation). In the Aconcagua valley (lat. 33°S.), moraines from three major glacial advances were found, at 2 800 m (Portillo glaciation), 1 600 m (Guardia Vieja glaciation) and 1 300 m (Salto del Soldado glaciation).The Quaternary glaciations were linked with a decrease of temperature, but more significantly with a marked increase of precipitation probably related to an equatorward shift of 5–6 degrees of the austral polar front. The results obtained in the semi-arid Chilean Andes are correlated with those recently reported from other sectors of the southern Andes.


2019 ◽  
Vol 11 (17) ◽  
pp. 2016
Author(s):  
Lijuan Wang ◽  
Ni Guo ◽  
Wei Wang ◽  
Hongchao Zuo

FY-4A is a second generation of geostationary orbiting meteorological satellite, and the successful launch of FY-4A satellite provides a new opportunity to obtain diurnal variation of land surface temperature (LST). In this paper, different underlying surfaces-observed data were applied to evaluate the applicability of the local split-window algorithm for FY-4A, and the local split-window algorithm parameters were optimized by the artificial intelligent particle swarm optimization (PSO) algorithm to improve the accuracy of retrieved LST. Results show that the retrieved LST can efficiently reproduce the diurnal variation characteristics of LST. However, the estimated values deviate hugely from the observed values when the local split-window algorithms are directly used to process the FY-4A satellite data, and the root mean square errors (RMSEs) are approximately 6K. The accuracy of the retrieved LST cannot be effectively improved by merely modifying the emissivity-estimated model or optimizing the algorithm. Based on the measured emissivity, the RMSE of LST retrieved by the optimized local split-window algorithm is reduced to 3.45 K. The local split-window algorithm is a simple and easy retrieval approach that can quickly retrieve LST on a regional scale and promote the application of FY-4A satellite data in related fields.


Sign in / Sign up

Export Citation Format

Share Document