scholarly journals APPLICATION OF REMOTE SENSING IN GEOLOGICAL MAPPING, CASE STUDY Al MAGHRABAH AREA – HAJJAH REGION, YEMEN

Author(s):  
F. Al-Nahmi ◽  
O. Saddiqi ◽  
A. Hilali ◽  
H. Rhinane ◽  
L. Baidder ◽  
...  

Remote sensing technology plays an important role today in the geological survey, mapping, analysis and interpretation, which provides a unique opportunity to investigate the geological characteristics of the remote areas of the earth's surface without the need to gain access to an area on the ground. The aim of this study is achievement a geological map of the study area. The data utilizes is Sentinel-2 imagery, the processes used in this study, the OIF Optimum Index Factor is a statistic value that can be used to select the optimum combination of three bands in a satellite image. It’s based on the total variance within bands and correlation coefficient between bands, ICA Independent component analysis (3, 4, 6) is a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals, MNF Minimum Noise Fraction (1, 2, 3) is used to determine the inherent dimensionality of image data to segregate noise in the data and to reduce the computational requirements for subsequent processing, Optimum Index Factor is a good method for choosing the best band for lithological mapping. ICA, MNF, also a practical way to extract the structural geology maps. The results in this paper indicate that, the studied area can be divided into four main geological units: Basement rocks (Meta volcanic, Meta sediments), Sedimentary rocks, Intrusive rocks, volcanic rocks. The method used in this study offers great potential for lithological mapping, by using Sentinel-2 imagery, the results were compared with existing geologic maps and were superior and could be used to update the existing maps.

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 960
Author(s):  
Behnam Mehdikhani ◽  
Ali Imamalipour

A single chromite deposit occurrence is found in the serpentinized harzburgite unit of the Khoy ophiolite complex in northwest Iran, which is surrounded by dunite envelopes. This area has mountainous features and extremely rugged topography with difficult access, so prospecting for chromite deposits by conventional geological mapping is challenging. Therefore, using remote sensing techniques is very useful and effective, in terms of saving costs and time, to determine the chromite-bearing zones. This study evaluated the discrimination of chromite-bearing mineralized zones within the Khoy ophiolite complex by analyzing the capabilities of ASTER satellite data. Spectral transformation methods such as optimum index factor (OIF), band ratio (BR), spectral angle mapper (SAM), and principal component analysis (PCA) were applied on the ASTER bands for lithological mapping. Many chromitite lenses are scattered in this ophiolite, but only a few have been explored. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinized dunite in ophiolitic complexes. In this study, after the correction of ASTER data, many conventional techniques were used. A specialized optimum index factor RGB (8, 6, 3) was developed using ASTER bands to differentiate lithological units. The color composition of band ratios such as RGB ((4 + 2)/3, (7 + 5)/6, (9 + 7)/8), (4/1, 4/7, 4/5), and (4/3 × 2/3, 3/4, 4/7) produced the best results. The integration of information extracted from the image processing algorithms used in this study mapped most of the lithological units of the Khoy ophiolitic complex and new prospecting targets for chromite exploration were determined. Furthermore, the results were verified by comprehensive fieldwork and previous studies in the study area. The results of this study indicate that the integration of information extracted from the image processing algorithms could be a broadly applicable tool for chromite prospecting and lithological mapping in mountainous and inaccessible regions such as Iranian ophiolitic zones.


2020 ◽  
Vol 8 (S1) ◽  
pp. S26-S42 ◽  
Author(s):  
Roberto Interdonato ◽  
Raffaele Gaetano ◽  
Danny Lo Seen ◽  
Mathieu Roche ◽  
Giuseppe Scarpa

AbstractNowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is the Sentinel-2 Earth Observation mission, developed by the European Space Agency as part of the Copernicus Programme, which supplies images from the whole planet at high spatial resolution (up to 10 m) with unprecedented revisit time (every 5 days at the equator). In this data-rich scenario, the remote sensing community is showing a growing interest toward modern supervised machine learning techniques (e.g., deep learning) to perform information extraction, often underestimating the need for reference data that this framework implies. Conversely, few attention is being devoted to the use of network analysis techniques, which can provide a set of powerful tools for unsupervised information discovery, subject to the definition of a suitable strategy to build a network-like representation of image data. The aim of this work is to provide clues on how Satellite Image Time Series can be profitably represented using complex network models, by proposing a methodology to build a multilayer network from such data. This is the first work to explore the possibility to exploit this model in the remote sensing domain. An example of community detection over the provided network in a real-case scenario for the mapping of complex land use systems is also presented, to assess the potential of this approach.


2019 ◽  
Vol 7 (9) ◽  
pp. 316 ◽  
Author(s):  
Francesco Immordino ◽  
Mattia Barsanti ◽  
Elena Candigliota ◽  
Silvia Cocito ◽  
Ivana Delbono ◽  
...  

Sustainable and ecosystem-based marine spatial planning is a priority of Pacific Island countries basing their economy on marine resources. The urgency of management coral reef systems and associated coastal environments, threatened by the effects of climate change, require a detailed habitat mapping of the present status and a future monitoring of changes over time. Here, we present a remote sensing study using free available Sentinel-2 imagery for mapping at large scale the most sensible and high value habitats (corals, seagrasses, mangroves) of Palau Republic (Micronesia, Pacific Ocean), carried out without any sea truth validation. Remote sensing ‘supervised’ and ‘unsupervised’ classification methods applied to 2017 Sentinel-2 imagery with 10 m resolution together with comparisons with free ancillary data on web platform and available scientific literature were used to map mangrove, coral, and seagrass communities in the Palau Archipelago. This paper addresses the challenge of multispectral benthic mapping estimation using commercial software for preprocessing steps (ERDAS ATCOR) and for benthic classification (ENVI) on the base of satellite image analysis. The accuracy of the methods was tested comparing results with reference NOAA (National Oceanic and Atmospheric Administration, Silver Spring, MD, USA) habitat maps achieved through Ikonos and Quickbird imagery interpretation and sea-truth validations. Results showed how the proposed approach allowed an overall good classification of marine habitats, namely a good concordance of mangroves cover around Palau Archipelago with previous literature and a good identification of coastal habitats in two sites (barrier reef and coastal reef) with an accuracy of 39.8–56.8%, suitable for survey and monitoring of most sensible habitats in tropical remote islands.


Author(s):  
Sara Salehi

Lithological mapping using remote sensing depends, in part, on the identification of rock types by their spectral characteristics. Chemical and physical properties of minerals and rocks determine their diagnostic spectral features throughout the electromagnetic spectrum. Shifts in the position and changes in the shape and depth of these features can be explained by variations in chemical composition of minerals. Detection of such variations is vital for discriminating minerals with similar chemical composition. Compared with multispectral image data, airborne or spaceborne hyperspectral imagery offers higher spectral resolution, which makes it possible to estimate the mineral composition of the rocks under study without direct contact. Arctic environments provide challenging ground for geological mapping and mineral exploration. Inaccessibility commonly complicates ground surveys, and the presence of ice, vegetation and rock-encrusting lichens hinders remote sensing surveys. This study addresses the following objectives: 1. Modelling the impact of lichen on the spectra of the rock substrate; 2. Identification of a robust lichen index for the deconvolution of lichen and rock mixtures and 3. Multiscale hyperspectral analysis of lithologies in areas with abundant lichens.


Author(s):  
Phan Quoc Yen ◽  
Dao Khanh Hoai ◽  
Dinh Thi Bao Hoa

Satellite image data is being researched and applied effectively in the survey and establishment of bathymetry mapping in shallow water areas in both time and human terms. Remote sensing techniques contribute to rapid updating of topography, timely assurance of civil and military operations such as maritime safety, environmental security and rescue, Warfare in the military, especially the ability to remotely monitor disputed areas. The article experiment with the Stumpf et al algorithm to estimate the shallow water depths on the Spratly Island by Landsat 8 image. The correlation coefficient of the model R2 is 0.924; RMSE is 0.99m. In addition, the results are compared with the map data of C-map and use 12 actual test points scores to evaluate the accuracy of the model.


2018 ◽  
Vol 6 (4) ◽  
pp. 433-441
Author(s):  
Aulia Huda Riyanti ◽  
Agung Suryanto ◽  
Churun Ain

Garis pantai Desa Surodadi mengalami perubahan dari tahun ke tahun. Perubahan yang serius ini perlu untuk dilakukan pemantauan terus menerus. Penelitian ini dilakukan untuk memperoleh informasi tentang perubahan garis pantai dan kaitannya dengan tutupan lahan di pesisir Desa Surodadi Kecamatan Sayung Kabupaten Demak pada tahun 2015 dan 2016. Penelitian ini dilaksanakan pada bulan Mei sampai dengan Juni 2017. Stasiun penelitian dibagi menjadi lima stasiun berdasarkan lokasi abrasi dan akresi yang telah terjadi. Dengan proses overlay kedua data citra satelit melalui sistem informasi geografis merupakan cara cepat untuk mengetahui perubahan garis pantai yang terjadi pada pesisir Desa Surodadi. Metode penelitian ini dengan menggunakan metode deskriptif studi kasus dengan menggunakan teknologi penginderaan jauh pada pengolahan data citra SPOT 6 tahun 2015 dan tahun 2016 yang diperoleh dari Pusat Teknologi dan Data Penginderaan Jauh LAPAN Jakarta serta dilakukan survei lapangan sehingga diperoleh laju perubahan garis pantai serta tutupan lahan yang terdapat pada lokasi penelitian. Garis pantai yang terjadi dari tahun 2015 sampai tahun 2016 lebih banyak mengalami proses abrasi jika dibandingkan proses akresi. Berdasarkan hasil penelitian dapat diketahui laju perubahan panjang garis pantai sebesar 103,58 m, perubahan garis pantai yang terjadi berupa abrasi sebesar 1,197 ha dan perubahan yang berupa akresi sebesar 0,490 ha. Keterkaitan antara perubahan garis pantai dengan tutupan lahan di Desa Surodadi adalah tutupan mangrove yang ada cukup luas dan relatif rapat sehingga dapat mencegah intrusi air laut yang dapat menyebabkan perubahan garis pantai. Surodadi village coastline changes from year to year. This serious change is necessary for ongoing monitoring. This research was conducted to obtain information about coastline change and its relation to land cover in coastal village of Surodadi Sub-District of Sayung Regency of Demak in 2015 until 2016. This research was conducted from May to June 2017. The research station is divided into five stations based on the location of abrasion and Accretion that has occurred. With the second overlay process satellite image data through geographic information system is a quick way to find out the shoreline changes that occur in the coastal village of Surodadi. This research method is done by using descriptive method of case study by using remote sensing technology on SPOT image data processing of 6 year 2015 and year 2016 which obtained from Center of Technology and Remote Sensing Data of LAPAN Jakarta and conducted field survey so that obtained rate of change of coastline happened also Land cover located at the research location. Coastlines that occur from 2015 to 2016 more experienced abrasion process when compared to the accretion process. Based on the research results can be seen the rate of change of coastline length of 103.58 m, shoreline changes that occur in the form of abrasion of 1.197 ha and changes in the form of accretion of 0.490 ha. The link between coastline change and land cover in Surodadi Village is that the mangrove cover is wide enough and relatively close so it can prevent the intrusion of sea water which can cause coastline changes.


Author(s):  
Kuncoro Teguh Setiawan ◽  
Yennie Marini ◽  
Johannes Manalu ◽  
Syarif Budhiman

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 641 ◽  
Author(s):  
Joel Segarra ◽  
Maria Luisa Buchaillot ◽  
Jose Luis Araus ◽  
Shawn C. Kefauver

The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.


2010 ◽  
Vol 22 (3) ◽  
pp. 299-318 ◽  
Author(s):  
C.E. Haselwimmer ◽  
T.R. Riley ◽  
J.G. Liu

AbstractThe results of lithological mapping using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for the Wright Peninsula region of Adelaide Island, Antarctic Peninsula are compared with existing geological maps and recent field observations to assess the potential of multispectral remote sensing to undertake lithological mapping on the Antarctic Peninsula. The Wright Peninsula comprises calc-alkaline intrusive rocks ranging from granite to gabbro, volcanic rocks of acidic to intermediate composition, and arc-related sediments. The reflective and thermal bands of a single ASTER image were analysed with reference to reflectance spectra of rock samples from the study area. Assessment of the ASTER mapping outcomes was undertaken with a newly compiled geological map of Adelaide Island and observations made during recent fieldwork. The results demonstrate that ASTER can uniquely discriminate granitoid intrusive rocks and altered rhyolitic volcanic rocks that display distinctive spectral properties. The results are more ambiguous at discriminating more intermediate/mafic rocks such as diorite/gabbro, andesite/basalt and chlorite-bearing sediments due to the similarity in spectral properties. These results demonstrate that although ASTER data are limited in their ability to uniquely discriminate lithologies they can provide important lithological information in support of geological mapping on the Antarctic Peninsula.


Author(s):  
Q. J. Chen ◽  
Y. R. He ◽  
T. T. He ◽  
W. J. Fu

Abstract. The satellite image data has some shortcomings such as poor timeless, incomplete disaster information and so on in the typhoon disaster analysis. Compared with the satellite image data, unmanned aerial vehicle (UAV) remote sensing technology has the characteristics of flexibility, convenience, high resolution and so on. It plays a great role in the aspect of obtaining the images and systematically analyze the disaster data. This research based on UAV technology to obtain the high resolution image data and complied the disaster thematic maps after interpretation, as well as determining the data model. Subsequently, determining the system used Html, Javascript and CSS to build the system framework. Combining with Postgre SQL database, Leaflet map module and Echarts diagram and other technologies to perform the feasibility analysis and the detailed design of the integrated system. Finally, it could accurately and comprehensively obtain the system’s disaster monitoring, the typhoon track display, the diagram statistics and visual analysis of the data processing, as well it could deeply analysis and management for the disaster information and assessment. The application shows that this system could provide the information support for future emergency rescue, which is of great significance for the monitoring and preventing the occurrence natural disasters in the future.


Sign in / Sign up

Export Citation Format

Share Document