scholarly journals H<sub>2</sub>S dosimeter with controllable percolation threshold based on semi-conducting copper oxide thin films

2017 ◽  
Vol 6 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Christoph Seitz ◽  
Giuliana Beck ◽  
Jörg Hennemann ◽  
Christian Kandzia ◽  
Karl P. Hering ◽  
...  

Abstract. Copper oxides, such as CuO and Cu2O, are promising materials for H2S detection because of the reversible reaction with H2S to copper sulfides (CuS, Cu2S). Along with the phase change, the electrical conductance increases by several orders of magnitude. On CuOx films the H2S reaction causes the formation of statistically distributed CuxS islands. Continuous exposition to H2S leads to island growth and eventually to the formation of an electrical highly conductive path traversing the entire system: the so-called percolation path. The associated CuOx ∕ CuxS conversion ratio is referred to as the percolation threshold. This pronounced threshold causes a gas concentration dependent switch-like behaviour of the film conductance. However, to utilize this effect for the preparation of CuO-based H2S sensors, a profound understanding of the operational and morphological parameters influencing the CuS path evolution is needed.Thus, this article is focused on basic features of H2S detection by copper oxide films and the influence of structural parameters on the percolation threshold and switching behaviour. In particular, two important factors, namely the stoichiometry of copper oxides (CuO, Cu2O and Cu4O3) and surface morphology, are investigated in detail. CuOx thin films were synthesized by a radio frequency magnetron sputtering process which allows modification of these parameters. It could be shown that, for instance, the impact on the switching behaviour is dominated by morphology rather than stoichiometry of copper oxide.

Author(s):  
J. L. Lee ◽  
C. A. Weiss ◽  
R. A. Buhrman ◽  
J. Silcox

BaF2 thin films are being investigated as candidates for use in YBa2Cu3O7-x (YBCO) / BaF2 thin film multilayer systems, given the favorable dielectric properties of BaF2. In this study, the microstructural and chemical compatibility of BaF2 thin films with YBCO thin films is examined using transmission electron microscopy and microanalysis. The specimen was prepared by using laser ablation to first deposit an approximately 2500 Å thick (0 0 1) YBCO thin film onto a (0 0 1) MgO substrate. An approximately 7500 Å thick (0 0 1) BaF2 thin film was subsequendy thermally evaporated onto the YBCO film.Images from a VG HB501A UHV scanning transmission electron microscope (STEM) operating at 100 kV show that the thickness of the BaF2 film is rather uniform, with the BaF2/YBCO interface being quite flat. Relatively few intrinsic defects, such as hillocks and depressions, were evident in the BaF2 film. Moreover, the hillocks and depressions appear to be faceted along {111} planes, suggesting that the surface is smooth and well-ordered on an atomic scale and that an island growth mechanism is involved in the evolution of the BaF2 film.


2018 ◽  
Vol 1 (1) ◽  
pp. 21-25
Author(s):  
R Revathi ◽  
R Karunathan

Indium Telluride thin films were prepared by thermal evaporation technique. Films were annealed at 573K under vacuum for an hour. Both as-deposited and annealed films were used for characterization. The structural parameters were discussed on the basis of annealing effect for a film of thickness 1500 Å. Optical analysis was carried out on films of different thicknesses for both as - deposited and annealed samples. Both the as- deposited and annealed films exhibit direct and allowed transition. Electrical resistivity measurements were made in the temperature range of 303-473 K using Four-probe method. The calculated resistivity value is of the order of 10-6 ohm meter. The activation energy value decreases with increasing film thickness. The negative temperature coefficient indicates the semiconducting nature of the film.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26218-26227
Author(s):  
R. Panda ◽  
S. A. Khan ◽  
U. P. Singh ◽  
R. Naik ◽  
N. C. Mishra

Swift heavy ion (SHI) irradiation in thin films significantly modifies the structure and related properties in a controlled manner.


2021 ◽  
Vol 11 (13) ◽  
pp. 5895
Author(s):  
Kristina Serec ◽  
Sanja Dolanski Babić

The double-stranded B-form and A-form have long been considered the two most important native forms of DNA, each with its own distinct biological roles and hence the focus of many areas of study, from cellular functions to cancer diagnostics and drug treatment. Due to the heterogeneity and sensitivity of the secondary structure of DNA, there is a need for tools capable of a rapid and reliable quantification of DNA conformation in diverse environments. In this work, the second paper in the series that addresses conformational transitions in DNA thin films utilizing FTIR spectroscopy, we exploit popular chemometric methods: the principal component analysis (PCA), support vector machine (SVM) learning algorithm, and principal component regression (PCR), in order to quantify and categorize DNA conformation in thin films of different hydrated states. By complementing FTIR technique with multivariate statistical methods, we demonstrate the ability of our sample preparation and automated spectral analysis protocol to rapidly and efficiently determine conformation in DNA thin films based on the vibrational signatures in the 1800–935 cm−1 range. Furthermore, we assess the impact of small hydration-related changes in FTIR spectra on automated DNA conformation detection and how to avoid discrepancies by careful sampling.


2021 ◽  
Vol 9 (1) ◽  
pp. 117-126
Author(s):  
Jonas Keukelier ◽  
Karl Opsomer ◽  
Thomas Nuytten ◽  
Stefanie Sergeant ◽  
Wouter Devulder ◽  
...  

Raman spectroscopy and electrical measurements are performed on sputtered GexSe1−x thin films to identify and link bond presence to electrical behaviour.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1230
Author(s):  
Jessica Manzi ◽  
Annalisa Paolone ◽  
Oriele Palumbo ◽  
Domenico Corona ◽  
Arianna Massaro ◽  
...  

In this manuscript, we report a detailed physico-chemical comparison between the α- and β-polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electrochemical performance in sodium batteries, are compared to highlight differences and similarities. We exploit both laboratory techniques (Raman spectroscopy, electrochemical methods) and synchrotron radiation experiments (Fast-Fourier Transform Infrared spectroscopy, and X-ray diffraction). Notably the vibrational spectra of these phases are here reported for the first time in the literature as well as the detailed structural analysis from diffraction data. DFT+U calculations predict both phases to have similar electronic features, with structural parameters consistent with the experimental counterparts. The experimental evidence of antisite defects in the beta-phase between sodium and manganese ions is noticeable. Both polymorphs have been also tested in aprotic batteries by comparing the impact of different liquid electrolytes on the ability to de-intercalated/intercalate sodium ions. Overall, the monoclinic α-NaMnO2 shows larger reversible capacity exceeding 175 mAhg−1 at 10 mAg−1.


Sign in / Sign up

Export Citation Format

Share Document