scholarly journals Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

Author(s):  
James D. S. Cullis ◽  
Nicholas J. Walker ◽  
Fadiel Ahjum ◽  
Diego Juan Rodriguez

Abstract. Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water demands in some regions and making water available for other users in other regions with a declining future energy demand. This study presents a methodology for modelling the water-energy nexus that could be used to inform the sustainable development planning process in the water and energy sectors for both developed and developing countries.

1989 ◽  
Vol 8 (1) ◽  
pp. 9-11
Author(s):  
A. B. De Villiers ◽  
L. A. Van Wyk ◽  
W. Viviers

A method has been developed to distinguish between water supply and demand in individual development regions which contain distinct humid and arid to subarid areas. Development regions A and D have heterogeneous climatic distributions within their borders and are dealt with in this regard. These regions can be divided into arid and humid areas. A magisterial district was considered to be humid when the average annual rainfall is more than 400 mm over more than 50 percent of its total area. The water availability and demand for each of the districts (whether humid or arid) were calculated on a pro rata basis according to the area each district occupies within the various secondary drainage basins. The results obtained in this study show great promise to divide the regions into arid and humid areas for more accurate and detailed planning within the development regions.


2009 ◽  
Vol 6 (4) ◽  
pp. 4919-4959 ◽  
Author(s):  
J. C. M. Andersson ◽  
A. J. B. Zehnder ◽  
G. P. W. Jewitt ◽  
H. Yang

Abstract. Water productivity in smallholder rain-fed agriculture is of key interest for food and livelihood security. A frequently advocated approach to enhance water productivity is to adopt water harvesting and conservation technologies (WH). This study estimates water availability for in situ WH and supplemental water demands (SWD) in smallholder agriculture in the Thukela River Basin, South Africa. It incorporates process dynamics governing runoff generation and crop water demands, an explicit account of the reliability of in situ WH, and uncertainty considerations. The agro-hydrological model SWAT (Soil and Water Assessment Tool) was calibrated and evaluated with the SUFI-2 algorithm against observed crop yield and discharge in the basin. The water availability was based on the generated surface runoff in smallholder areas. The SWD was derived from a scenario where crop water deficits were met from an unlimited external water source. The reliability was calculated as the percentage of years in which the water availability ≥ the SWD. It reflects the risks of failure induced by the temporal variability in these factors. The results show that the smallholder crop water productivity is low in the basin (spatiotemporal median: 0.08–0.22 kg m−3, 95% prediction uncertainty band (95PPU). Water is available for in situ WH (spatiotemporal median: 0–17 mm year−1, 95PPU) which may aid in enhancing the crop water productivity by meeting some of the SWD (spatiotemporal median: 0–113 mm year−1, 95PPU). However, the reliability of in situ WH is highly location specific and overall rather low. Of the 1850 km2 of smallholder lands, 20–28% display a reliability ≥25%, 13–16% a reliability ≥50%, and 4–5% a reliability ≥75% (95PPU). This suggests that the risk of failure of in situ WH is relatively high in many areas of the basin.


2021 ◽  
Vol 19 (2) ◽  
pp. 227-235
Author(s):  
Yulia Dwi Kurniasari ◽  
Hadi Susilo Arifin ◽  
Muhammad Yanuar Purwanto

Peningkatan jumlah penduduk, laju pertumbuhan ekonomi dan pengembangan wilayah berdampak pada kondisi sumber daya air. Keterbatasan prasarana tampungan air menjadi penyebab pentingnya distribusi sumber daya air secara berkelanjutan. Penelitian ini bertujuan mengetahui kondisi neraca air dan prasarana tampungan air yang ada di DAS Ciujung. Metode yang digunakan adalah menghitung kebutuhan dan ketersediaan air, Neraca surplus-defisit, Indeks Pemakaian Air (IPA) dan Indeks ketersediaan air per kapita berdasarkan metode SNI 6728.1.2015 serta indikator tampungan air. Ketersediaan air dihitung berdasarkan debit andalan 80% (Q80). Kebutuhan air dihitung dari kebutuhan rumah tangga, perkotaan, industri (RKI), irigasi, peternakan, perikanan dan pemeliharaan sungai. Prasarana tampungan air dihitung melalui indikator tampungan bangunan konservasi air yang ada. Hasil analisis menunjukkan bahwa kebutuhan air di DAS Ciujung sebesar 37,52 m3/detik sedangkan ketersediaan airnya sebesar 36,57 m3/detik. Hal ini mengindikasikan adanya defisit air sebesar 0,95 m3/detik. Indeks Pemakaian Air sebesar 1,03 (kategori jelek). Indeks ketersediaan air per kapita sebesar 623,05 (indikasi kelangkaan air). Sedangkan indikator tampungan air sebesar 31,34% (kategori baik).  ABSTRACTThe population growth, the rapid rate of economic growth and regional development will have an impact on the condition of water resources. Limited water storage infrastructure is the importance cause of allocating water resources. The objective of study is to know the water balance and water storage infrastructure in Ciujung Watershed. The analysis methods was used to calculate the amount of water supply and demand, to calculate the surplus-deficit balance, Water Consumption index (IPA), Water Availability Index per Capita refers to SNI 6728.1.2015 and water storage indicator. Water supply calculation based on the mainstay discharge of 80% (Q80). Water demands calculation from the demand of households, cities and industries (RKI), irrigation, livestock, fisheries and river maintenance. Capacity of existing water conservation storage used to predict the water storage infrastructure. The results of analysis show that the water demands in Ciujung Watershed is 37,52 m3/second, while the water supply is 36,57 m3/second. This indicates there is a water deficit of 0,95 m3/second. According to calculation, Water Consumption Index is 1,03 (bad category), It resulted that Water availability index per capita is 623,05 (water scarcity indicator). On the other hand, Indicator for water storage is 31,34% (good category).


1988 ◽  
Vol 7 (2) ◽  
pp. 87-90
Author(s):  
A. B. De Villiers ◽  
W. Viviers ◽  
L. A. Van Wyk

The availability of water data in the development regions is at present insufficient. This is due to the fact that water supply and demand is calculated for the physical drainage regions (watersheds), while the development regions do not correspond with the drainage regions. The necessary calculations can accordingly presently not be made. In this paper this problem is addressed.


2010 ◽  
Vol 59 (1) ◽  
pp. 151-156 ◽  
Author(s):  
H. Klupács ◽  
Á. Tarnawa ◽  
I. Balla ◽  
M. Jolánkai

Water supply of crop plants is the most essential physiological condition influencing quality and quantity performance of grain yield. In a 12-year experimental series of winter wheat agronomic trials run at the Nagygombos experimental site (Hungary) the effect of water availability has been studied. The location represents the typical average lowland conditions of the country, the annual precipitation of the experimental site belonging to the 550–600 mm belt of the Northern edges of the Great Hungarian Plain, while the average depth of groundwater varies between 2 to 3 metres. Crop years with various precipitation patterns have had different impacts on crop yield quality and quantity. Yield figures were in positive correlation with annual precipitation in general. Water availability had diverse influence on quality manifestation. Good water supply has often resulted in poorer grain quality, especially wet gluten and Hagberg values have been affected by that. Drought reduced the amount of yield in general, but contributed to a better quality manifestation in some of the crop years.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 201-209 ◽  
Author(s):  
W. Kreisel

Water quality can affect human health in various ways: through breeding of vectors, presence of pathogenic protozoa, helminths, bacteria and viruses, or through inorganic and organic chemicals. While traditional concern has been with pathogens and gastro-intestinal diseases, chemical pollutants in drinking-water supplies have in many instances reached proportions which affect human health, especially in cases of chronic exposure. Treatment of drinking-water, often grossly inadequate in developing countries, is the last barrier of health protection, but control at source is more effective for pollution control. Several WHO programmes of the International Drinking-Water Supply and Sanitation Decade have stimulated awareness of the importance of water quality in public water supplies. Three main streams have been followed during the eighties: guidelines for drinking-water quality, guidelines for wastewater reuse and the monitoring of freshwater quality. Following massive investments in the community water supply sector to provide people with adequate quantities of drinking-water, it becomes more and more important to also guarantee minimum quality standards. This has been recognized by many water and health authorities in developing countries and, as a result, WHO cooperates with many of them in establishing water quality laboratories and pollution control programmes.


Author(s):  
Sejabaledi Agnes Rankoana

Purpose The study explored the impacts of climate change on water resources, and the community-based adaptation practices adopted to ensure water security in a rural community in Limpopo Province, South Africa. Design/methodology/approach The study was conducted in Limpopo Province, South Africa. The participatory approach was used to allow community members to share their challenges of water scarcity, and the measures they have developed to cope with inconsistent water supply. Findings The study results show that the community obtains water for household consumption from the reticulation system supplied by Mutale River and the community borehole. These resources are negatively impacted by drought, change in the frequency and distribution of rainfall, and increased temperature patterns. The water levels in the river and borehole have declined, resulting in unsustainable water supply. The community-based adaptation practices facilitated by the water committee include observance of restrictions and regulations on the water resources use. Others involve securing water from neighbouring resources. Originality/value This type of community-based action in response to climate change could be used as part of rural water management strategies under climate change.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


Sign in / Sign up

Export Citation Format

Share Document