scholarly journals Influence of Wind Turbine Design Parameters on Linearized Physics-Based Models in OpenFAST

2021 ◽  
Author(s):  
Jason M. Jonkman ◽  
Emmanuel S. P. Branlard ◽  
John P. Jasa

Abstract. While most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear wind-system equations is often important for understanding the system response and exploiting well-established methods and tools for analyzing linear systems. Linearized models are important for, e.g., eigenanalysis (to derive structural natural frequencies, damping ratios, and mode shapes) and controls design (based on linear state-space models). In controls co-design (CCD), whose methods often rely on linearized time-domain models of the physics, the physical structure (often called the plant) and controller are designed and optimized concurrently, so, it is important to understand how changes to the physical design affect the linearized system. This work summarizes efforts done to understand the impact of design parameter variations in the physical system (mass, stiffness, geometry, etc.) on the linearized system using OpenFAST.

Author(s):  
Gražina ŽIBIENĖ ◽  
Alvydas ŽIBAS ◽  
Goda BLAŽAITYTĖ

The construction of dams in rivers negatively affects ecosystems because dams violate the continuity of rivers, transform the biological and physical structure of the river channels, and the most importantly – alter the hydrological regime. The impact on the hydrology of the river can occur through reducing or increasing flows, altering seasonality of flows, changing the frequency, duration and timing of flow events, etc. In order to determine the extent of the mentioned changes, The Indicators of Hydrologic Alteration (IHA) software was used in this paper. The results showed that after the construction of Angiriai dam, such changes occurred in IHA Parameters group as: the water conditions of April month decreased by 31 %; 1-day, 3-days, 7-days and 30-days maximum flow decreased; the date of minimum flow occurred 21 days later; duration of high and low pulses and the frequency of low pulses decreased, but the frequency of high pulses increased, etc. The analysis of the Environmental Flow Components showed, that the essential differences were recorded in groups of the small and large floods, when, after the establishment of the Šušvė Reservoir, the large floods no longer took place and the probability of frequency of the small floods didn’t exceed 1 time per year.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-26
Author(s):  
Md Musabbir Adnan ◽  
Sagarvarma Sayyaparaju ◽  
Samuel D. Brown ◽  
Mst Shamim Ara Shawkat ◽  
Catherine D. Schuman ◽  
...  

Spiking neural networks (SNN) offer a power efficient, biologically plausible learning paradigm by encoding information into spikes. The discovery of the memristor has accelerated the progress of spiking neuromorphic systems, as the intrinsic plasticity of the device makes it an ideal candidate to mimic a biological synapse. Despite providing a nanoscale form factor, non-volatility, and low-power operation, memristors suffer from device-level non-idealities, which impact system-level performance. To address these issues, this article presents a memristive crossbar-based neuromorphic system using unsupervised learning with twin-memristor synapses, fully digital pulse width modulated spike-timing-dependent plasticity, and homeostasis neurons. The implemented single-layer SNN was applied to a pattern-recognition task of classifying handwritten-digits. The performance of the system was analyzed by varying design parameters such as number of training epochs, neurons, and capacitors. Furthermore, the impact of memristor device non-idealities, such as device-switching mismatch, aging, failure, and process variations, were investigated and the resilience of the proposed system was demonstrated.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 174
Author(s):  
Johannes Seidel ◽  
Stephan Lippert ◽  
Otto von Estorff

The slightest manufacturing tolerances and variances of material properties can indeed have a significant impact on structural modes. An unintentional shift of eigenfrequencies towards dominant excitation frequencies may lead to increased vibration amplitudes of the structure resulting in radiated noise, e.g., reducing passenger comfort inside an aircraft’s cabin. This paper focuses on so-called non-structural masses of an aircraft, also known as the secondary structure that are attached to the primary structure via clips, brackets, and shock mounts and constitute a significant part of the overall mass of an aircraft’s structure. Using the example of a simplified fuselage panel, the vibro-acoustical consequences of parameter uncertainties in linking elements are studied. Here, the fuzzy arithmetic provides a suitable framework to describe uncertainties, create combination matrices, and evaluate the simulation results regarding target quantities and the impact of each parameter on the overall system response. To assess the vibrations of the fuzzy structure and by taking into account the excitation spectra of engine noise, modal and frequency response analyses are conducted.


Author(s):  
Kiona Hagen Niehaus ◽  
Rebecca Fiebrink

This paper describes the process of developing a software tool for digital artistic exploration of 3D human figures. Previously available software for modeling mesh-based 3D human figures restricts user output based on normative assumptions about the form that a body might take, particularly in terms of gender, race, and disability status, which are reinforced by ubiquitous use of range-limited sliders mapped to singular high-level design parameters. CreatorCustom, the software prototype created during this research, is designed to foreground an exploratory approach to modeling 3D human bodies, treating the digital body as a sculptural landscape rather than a presupposed form for rote technical representation. Building on prior research into serendipity in Human-Computer Interaction and 3D modeling systems for users at various levels of proficiency, among other areas, this research comprises two qualitative studies and investigation of the impact on the first author's artistic practice. Study 1 uses interviews and practice sessions to explore the practices of six queer artists working with the body and the language, materials, and actions they use in their practice; these then informed the design of the software tool. Study 2 investigates the usability, creativity support, and bodily implications of the software when used by thirteen artists in a workshop. These studies reveal the importance of exploration and unexpectedness in artistic practice, and a desire for experimental digital approaches to the human form.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1358
Author(s):  
Ewa Golisz ◽  
Adam Kupczyk ◽  
Maria Majkowska ◽  
Jędrzej Trajer

The objective of this paper was to create a mathematical model of vacuum drops in a form that enables the testing of the impact of design parameters of a milking cluster on the values of vacuum drops in the claw. Simulation tests of the milking cluster were conducted, with the use of a simplified model of vacuum drops in the form of a fourth-degree polynomial. Sensitivity analysis and a simulation of a model with a simplified structure of vacuum drops in the claw were carried out. As a result, the impact of the milking machine’s design parameters on the milking process could be analysed. The results showed that a change in the local loss and linear drag coefficient in the long milk duct will have a lower impact on vacuum drops if a smaller flux of inlet air, a higher head of the air/liquid mix, and a higher diameter of the long milk tube are used.


2021 ◽  
Vol 13 (9) ◽  
pp. 4606
Author(s):  
Faisal Masood ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Javed Akhter ◽  
Mohammad Azad Alam

A compound parabolic concentrator (CPC) is a non-imaging device generally used in PV, thermal, or PV/thermal hybrid systems for the concentration of solar radiation on the target surface. This paper presents the geometric design, statistical modeling, parametric analysis, and geometric optimization of a two-dimensional low concentration symmetric compound parabolic concentrator for potential use in building-integrated and rooftop photovoltaic applications. The CPC was initially designed for a concentration ratio of “2×” and an acceptance half-angle of 30°. A MATLAB code was developed in house to provoke the CPC reflector’s profile. The height, aperture width, and concentration ratios were computed for different acceptance half-angles and receiver widths. The interdependence of optical concentration ratio and acceptance half-angle was demonstrated for a wide span of acceptance half-angles. The impact of the truncation ratio on the geometric parameters was investigated to identify the optimum truncation position. The profile of truncated CPC for different truncation positions was compared with full CPC. A detailed statistical analysis was performed to analyze the synergistic effects of independent design parameters on the responses using the response surface modeling approach. A set of optimized design parameters was obtained by establishing specified optimization criteria. A 50% truncated CPC with an acceptance half-angle of 21.58° and receiver width of 193.98 mm resulted in optimum geometric dimensions.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Javaid Ahmad ◽  
Shaohong Cheng ◽  
Faouzi Ghrib

Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.


1992 ◽  
Vol 114 (1) ◽  
pp. 79-90 ◽  
Author(s):  
O. P. Sharma ◽  
G. F. Pickett ◽  
R. H. Ni

The impacts of unsteady flow research activities on flow simulation methods used in the turbine design process are assessed. Results from experimental investigations that identify the impact of periodic unsteadiness on the time-averaged flows in turbines and results from numerical simulations obtained by using three-dimensional unsteady Computational Fluid Dynamics (CFD) codes indicate that some of the unsteady flow features can be fairly accurately predicted. Flow parameters that can be modeled with existing steady CFD codes are distinguished from those that require unsteady codes.


Sign in / Sign up

Export Citation Format

Share Document