scholarly journals Physiological Responses and Predictors of Performance in a Simulated Competitive Ski Mountaineering Race

2021 ◽  
pp. 250-257
Author(s):  
Michael Lasshofer ◽  
John Seifert ◽  
Anna-Maria Wörndle ◽  
Thomas Stöggl

Competitive ski mountaineering (SKIMO) has achieved great popularity within the past years. However, knowledge about the predictors of performance and physiological response to SKIMO racing is limited. Therefore, 21 male SKIMO athletes split into two performance groups (elite: VO2max 71.2 ± 6.8 ml· min-1· kg-1 vs. sub-elite: 62.5 ± 4.7 ml· min-1· kg-1) were tested and analysed during a vertical SKIMO race simulation (523 m elevation gain) and in a laboratory SKIMO specific ramp test. In both cases, oxygen consumption (VO2), heart rate (HR), blood lactate and cycle characteristics were measured. During the race simulation, the elite athletes were approximately 5 min faster compared with the sub-elite (27:15 ± 1:16 min; 32:31 ± 2:13 min; p < 0.001). VO2 was higher for elite athletes during the race simulation (p = 0.046) and in the laboratory test at ventilatory threshold 2 (p = 0.005) and at maximum VO2 (p = 0.003). Laboratory maximum power output is displayed as treadmill speed and was higher for elite than sub-elite athletes (7.4 ± 0.3 km h-1; 6.6 ± 0.3 km h-1; p < 0.001). Lactate values were higher in the laboratory maximum ramp test than in the race simulation (p < 0.001). Pearson’s correlation coefficient between race time and performance parameters was highest for velocity and VO2 related parameters during the laboratory test (r > 0.6). Elite athletes showed their superiority in the race simulation as well as during the maximum ramp test. While HR analysis revealed a similar strain to both cohorts in both tests, the superiority can be explainable by higher VO2 and power output. To further push the performance of SKIMO athletes, the development of named factors like power output at maximum and ventilatory threshold 2 seems crucial.

Author(s):  
Alexandros Iliadis ◽  
Milena Tomovic ◽  
Dimitrios Dervas ◽  
Markella Psymarnou ◽  
Kosmas Christoulas ◽  
...  

Background: Cycling is a very demanding physical activity that may create various health disorders during an athlete’s career. Recently, smart mobile and wearable technologies have been used to monitor physiological responses and possible disturbances during physical activity. Thus, the application of mHealth methods in sports poses a challenge today. This study used a novel mobile-Health method to monitor athletes’ physiological responses and to detect health disorders early during cycling in elite athletes. Methods: Sixteen high-level cyclists participated in this study, which included a series of measurements in the laboratory; health and performance assessments; and then application in the field of mHealth monitoring in two training seasons, at the beginning of their training period and in the race season. A field monitoring test took place during 30 min of uphill cycling with the participant’s heart rate at the ventilatory threshold. During monitoring periods, heart rate, oxygen saturation, respiratory rate, and electrocardiogram were monitored via the mHealth system. Moreover, the SpO2 was estimated continuously, and the symptoms during effort were reported. Results: A significant correlation was found between the symptoms reported by the athletes in the two field tests and the findings recorded with the application of the mHealth monitoring method. However, from the pre-participation screening in the laboratory and from the spiroergometric tests, no abnormal findings were detected that were to blame for the appearance of the symptoms. Conclusions: The application of mHealth monitoring during competitive cycling is a very useful method for the early recording of cardiac and other health disorders of athletes, whose untimely evaluation could lead to unforeseen events.


2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Peter Leo ◽  
Iñigo Mujika ◽  
Justin Lawley

PURPOSE: The COVID-19 pandemic and its associated mobility restrictions caused many athletes to adjust or reduce their usual training load. The aim of this study was to investigate how the COVID-19 restrictions affected training and performance physiology measures in U23 elite cyclists. METHODS: Twelve U23 elite cyclists (n = 12) participated in this study (mean ± SD: Age 21.2 ± 1.2 years; height 182.9 ± 4.7 cm; body mass 71.4 ± 6.5 kg). Training characteristics were assessed between 30 days pre, during, and post COVID-19 restrictions, respectively. The physiological assessment in the laboratory was 30 days pre and post COVID-19 restrictions and included maximum oxygen uptake (V̇O2max), peak power output for sprint (SprintPmax), and ramp incremental graded exercise (GXTPmax), as well as power output at ventilatory threshold (VT) and respiratory compensation point (RCP). RESULTS: Training load characteristics before, during, and after the lockdown remained statistically unchanged (p > 0.05) despite large effects (>0.8) with mean reductions of 4.7 to 25.0% during COVID-19 restrictions. There were no significant differences in maximal and submaximal power outputs, as well as relative and absolute V̇O2max between pre and post COVID-19 restrictions (p > 0.05) with small to moderate effects. DISCUSSION: These results indicate that COVID-19 restrictions did not negatively affect training characteristics and physiological performance measures in U23 elite cyclists for a period of <30 days. In contrast with recent reports on professional cyclists and other elite level athletes, these findings reveal that as long as athletes are able to maintain and/or slightly adapt their training routine, physiological performance variables remain stable.


2014 ◽  
Vol 9 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Gregory T. Levin ◽  
Paul B. Laursen ◽  
Chris R. Abbiss

Purpose:To assess the reliability of a 5-min-stage graded exercise test (GXT) and determine the association between physiological attributes and performance over stochastic cycling trials of varying distance.Methods:Twenty-eight well-trained male cyclists performed 2 GXTs and either a 30-km (n = 17) or a 100-km stochastic cycling time trial (n = 9). Stochastic cycling trials included periods of high-intensity efforts for durations of 250 m, 1 km, or 4 km depending on the test being performing.Results:Maximal physiological attributes were found to be extremely reliable (maximal oxygen uptake [VO2max]: coefficient of variation [CV] 3.0%, intraclass correlation coefficient [ICC] .911; peak power output [PPO]: CV 3.0%, ICC .913), but a greater variability was found in ventilatory thresholds and economy. All physiological variables measured during the GXT, except economy at 200 W, were correlated with 30-km cycling performance. Power output during the 250-m and 1-km efforts of the 30-km trial were correlated with VO2max, PPO, and the power output at the second ventilatory threshold (r = .58–.82). PPO was the only physiological attributed measured during the GXT to be correlated with performance during the 100-km cycling trial (r = .64).Conclusions:Many physiological variables from a reliable GXT were associated with performance over shorter (30-km) but not longer (100-km) stochastic cycling trials.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 135
Author(s):  
Jonas Truong ◽  
Marius Bulota ◽  
Alexis Lussier Desbiens

Alpine skis have changed dramatically in the last century. Long and straight wood skis have evolved into shorter lengths and now contain a plethora of modern materials. Shaped skis have become the norm. Today’s skis also offer a variety of waist widths and shapes to cater to specific uses. By studying how skis have evolved, it is possible to gain insight into how the design of alpine skis has progressed. To do so, the mechanical properties of 1016 skis, from the 1920s to 2019, were measured with a machine developed at the University of Sherbrooke. The resulting data are used to calculate various geometric, stiffness and performance parameters. The evolution of these parameters over the years is analyzed. This analysis provides a better understanding of the evolution of ski design and shows when the introduction of new materials and shaping concepts has changed the way skis are designed.


Author(s):  
Javier Alves ◽  
Gema Barrientos ◽  
Víctor Toro ◽  
Esther Sánchez ◽  
Diego Muñoz ◽  
...  

Several anthropometric and performance parameters related to aerobic metabolism are associated with performance in endurance runners and are modified according to the training performed. The objective of this study was to investigate the ergospirometric and body composition changes in endurance runners during a sports season in relation to their training. Twenty highly trained men endurance runners performed an incremental test until exhaustion (initial, and at 3, 6, and 9 months) on a treadmill to determine maximal oxygen consumption (VO2 max), second ventilatory threshold (VT2), and their associated running speeds. Skinfolds, perimeters, and weights were measured. No changes were obtained in VO2 max or VT2 during the study, although their associated running speeds increased (p < 0.05) after 3 months of the study. Decreases in fat mass (p < 0.05) and muscle mass (p < 0.05) were observed at the end of the season (9 months). Changes occurred in the different skinfolds according to the characteristics of the training performed during the season. In conclusion, vVO2 max and vVT2 increase with a greater volume of kilometres trained and can be adversely affected by loss of muscle mass.


2021 ◽  
Vol 22 (3) ◽  
pp. 347-364
Author(s):  
Misbah Manzoor ◽  
Roohie Naaz Mir ◽  
Najeeb-ud-Din Hakim

As the trend of technology shrinking continues a vast amount of processors are being incorporated in a limited space. Due to this almost half of the chip area in Multi-Processor Systems-on-Chips (MPSoCs) is under interconnections, which pose a big problem for communication. Network-on-Chips (NoCs) evolved as a significant scalable solution for removing wiring congestion and communication problem in MPSoCs. NoCs provide the advantage of customized architecture, increased scalability and bandwidth. NoC is a structured framework where communication is the prime concern. In this review paper we present an overview of research and design approaches in the communication centric areas of NoCs. Here we have tried to discuss and iterate most of the available work done for communication in 2D NoCs. This paper gives the insight of different attributes and performance parameters of NoCs. Further it gives a detailed description of how topology, flow control and routing mechanisms can affect the qualitative aspects (performance) of NoCs. It then explains how various attributes of routing can help in increasing the efficacy of NoCs. Subsequently a brief review of different simulators used for NoCs is given. All of this is provided based on the survey of academic, theoretical and experimental approaches presented in the past. Finally some suggestions for future work are also given.


2004 ◽  
Vol 15 (3) ◽  
pp. 246-246
Author(s):  
M.A. Tony ◽  
A. Butschke ◽  
J. Zagon ◽  
H. Broll ◽  
M. Schauzu ◽  
...  

2020 ◽  
Vol 16 (5) ◽  
pp. 685-707 ◽  
Author(s):  
Amna Batool ◽  
Farid Menaa ◽  
Bushra Uzair ◽  
Barkat Ali Khan ◽  
Bouzid Menaa

: The pace at which nanotheranostic technology for human disease is evolving has accelerated exponentially over the past five years. Nanotechnology is committed to utilizing the intrinsic properties of materials and structures at submicroscopic-scale measures. Indeed, there is generally a profound influence of reducing physical dimensions of particulates and devices on their physico-chemical characteristics, biological properties, and performance. The exploration of nature’s components to work effectively as nanoscaffolds or nanodevices represents a tremendous and growing interest in medicine for various applications (e.g., biosensing, tunable control and targeted drug release, tissue engineering). Several nanotheranostic approaches (i.e., diagnostic plus therapeutic using nanoscale) conferring unique features are constantly progressing and overcoming all the limitations of conventional medicines including specificity, efficacy, solubility, sensitivity, biodegradability, biocompatibility, stability, interactions at subcellular levels. : This review introduces two major aspects of nanotechnology as an innovative and challenging theranostic strategy or solution: (i) the most intriguing (bare and functionalized) nanomaterials with their respective advantages and drawbacks; (ii) the current and promising multifunctional “smart” nanodevices.


2017 ◽  
Vol 7 (2) ◽  
pp. 7-25
Author(s):  
Karolina Diallo

Pupil with Obsessive-Compulsive Disorder. Over the past twenty years childhood OCD has received more attention than any other anxiety disorder that occurs in the childhood. The increasing interest and research in this area have led to increasing number of diagnoses of OCD in children and adolescents, which affects both specialists and teachers. Depending on the severity of symptoms OCD has a detrimental effect upon child's school performance, which can lead almost to the impossibility to concentrate on school and associated duties. This article is devoted to the obsessive-compulsive disorder and its specifics in children, focusing on the impact of this disorder on behaviour, experience and performance of the child in the school environment. It mentions how important is the role of the teacher in whose class the pupil with this diagnosis is and it points out that it is necessary to increase teachers' competence to identify children with OCD symptoms, to take the disease into the account, to adapt the course of teaching and to introduce such measures that could help children reduce the anxiety and maintain (or increase) the school performance within and in accordance with the school regulations and curriculum.


Sign in / Sign up

Export Citation Format

Share Document