The Effects of Carbon Black and Other Compounding Variables on Tire Rolling Resistance and Traction

1983 ◽  
Vol 56 (2) ◽  
pp. 390-417 ◽  
Author(s):  
W. M. Hess ◽  
W. K. Klamp

Abstract The rolling resistance of SBR/BR radial passenger tire treads was varied as a function of carbon black type and loading, as well as other compounding variables, such as oil content, high-viscosity oil and resin addition, and NR substitution. In all instances, the rolling loss variations showed a good correlation with either tan δ or resilience. The tan δ response was valid for a wide range of test temperatures, frequencies, and strain amplitudes. Wet (32 km/h) and dry (64 km/h) traction indicated a high positive correlation with loss compliance (D″). Here, the best correlations were obtained at lower dynamic testing temperatures (0–25°C.) and higher strain amplitudes. High-speed wet traction (97 km/h) appeared to be relatively independent of the tread compounding variables but did show a slight correlation with tan δ measured at ™25°C. The following patterns were observed relative to tread rolling resistance, traction, and wear as a function of compounding variables: 1. Black loading.—Reduced black loading lowers rolling resistance without much effect on traction. About 4% less black in the tread compound lowers rolling resistance by about 5–6% in the formulations which were evaluated. 2. Oil loading.—At a fixed black level, increased oil raises both rolling resistance and traction. About 2% higher rolling resistance was found for a 10 phr increase in oil loading, but the effect on wet traction appeared to be much greater (7–8%). 3. Black type.—Increasing black fineness raises both rolling resistance and traction, the latter effect being considerably less. Increased DBPA has very little effect on rolling resistance but reduces traction. At reduced black loadings, the finer and higher DBPA blacks show the least loss in treadwear resistance. Blacks with broad aggregate size distribution give lower rolling resistance at the same surface area and DBPA. For extreme blends (carcass and tread grades), however, the loss in treadwear resistance is quite severe (∼30%). 4. Curatives.—Increased sulfur and accelerator levels produced a significant reduction in tan δ, with a similar but lesser drop in D″. The same reduction in tan δ with increased accelerator (OBTS) level produced less effect on D″ than the sulfur increase. 5. Natural rubber substitution.—Compounds in which 30 phr of NR were substituted for 25 phr of SBR and 5 phr of BR indicated slightly better performance in terms of both rolling resistance and traction. 6. High-viscosity oil or resin substitution.—Replacing conventional extender oil with high-viscosity oil or resin appears to improve traction but has a greater adverse effect on rolling resistance. 7. Compound optimization.—N299 black gives the best overall balance of performance in terms of rolling resistance, traction, and treadwear at reduced black loadings. N121 confers about 10% better treadwear and equal traction in the same compound, but at about 4% higher rolling resistance.

2011 ◽  
Vol 84 (4) ◽  
pp. 493-506
Author(s):  
Irene S. Yurovska ◽  
Michael D. Morris ◽  
Theo Al

Abstract Racing tires and motorcycle tires present individual segments of the tire market. For instance, while the average life of car and truck tires is 50 000 miles, the average life of race tires is 100 miles. Because tires play a critical role in a race, technical demands to assure safety and performance are growing. Similarly, tires have a large influence on safety, handling/grip, and performance of the rapidly growing world fleet of motorcycles, due to the fact of only two wheels being in contact with the ground. Thus, the common feature of both market segments is that the typical tire compromise of wear, rolling resistance, and traction is strongly weighted toward traction. Most of the recent efforts of rubber scientists have been directed toward lowering rolling resistance of the tread compounds, which left a certain void in the science of compounding for racing and motorcycle treads. Particularly, the industrial assortment of polymers and fillers used for motorcycle treads is commonly different from that used for car or truck treads, but it is not known how the filler properties affect the hysteresis–stiffness compromise. The objective of this study is to evaluate the effects of the carbon black characteristics on the important properties of a typical racing and motorcycle tire tread compound. More than 50 individual carbon blacks were mixed in a SBR formulation. The acquired data were statistically analyzed, and a linear multiple regression model was developed to relate rubber properties (responses), such as static modulus, complex dynamic modulus, hysteresis, and viscosity to the key carbon black characteristics (variables) of surface area, structure, aggregate size distribution, and surface activity. Prediction profiles created from the model demonstrate rubber performance limits for the range of carbon blacks tested, and indicate the niches to provide required combinations of the rubber properties.


2020 ◽  
Vol 17 (34) ◽  
pp. 915-924 ◽  
Author(s):  
Oleg M PRISCHEPA ◽  
Yury V NEFEDOV ◽  
Olga E KOCHNEVA

The estimation of the share of hard-to-extract oil reserves in the deposits of Russia varies by different sources, in a fairly wide range (from 30 to 70 %). Due to the absence of a common approach to their definition, the variety of parameters used to estimate this share and fundamentally different conditions for the development of the groups of reserves classified as hard-to-extract become challanging. A significant share of the proven oil reserves of Russian oil fields - about 34 % (6.3 million tons) - belongs to heavy (oil density more than 0.871 g/cm3) and super-heavy (oil density more than 0.895 g/cm3). In general, the share of high-viscosity and super-highviscosity oils is about 13% (2.4 million tons). The largest share refers to the deposits of three districts. In lowpermeable collectors (permeability less than 0.05 μm2), huge reserves are concentrated – 8.2 million tons or 44.6 % of all oil. Comparison of oil extraction and reserves structure indicates a good correlation for oil extraction from low-permeable collectors in 41.8 % with reserves percentage in 44.6 % as well as a relatively good correlation in super-heavy oil in 13.4% with reserves percentage in 18 % and low rates for super-high-viscosity oil in 1.7% with reserves perecentage in 6 %. Significant proven reserves of high-viscosity oil in Russia indicate the possibility of increasing production with the introduction of modern, existing and proven, technologies under appropriate economic conditions. Full-scale involvement in the development of only the largest deposits of high-viscosity oil would allow the Russian Federation to produce at least 25-30 million tons in the medium term.


2001 ◽  
Vol 74 (1) ◽  
pp. 124-137 ◽  
Author(s):  
Meng-Jiao Wang ◽  
Ping Zhang ◽  
Khaled Mahmud

Abstract The application of carbon-silica dual phase fillers (CSDPF) to natural rubber compound was investigated. It was found that these new fillers give significantly better overall performances in comparison with the conventional fillers—carbon black and silica. In a typical truck-tread compound, due to its high polymer—filler interaction and lower filler—filler interaction, the CSDPF E shows a comparable laboratory abrasion resistance and more than 40% reduction in tan δ at 70 °C, a parameter for rolling resistance, compared to compound filled with its carbon black counterpart, N1 10. These properties can, to a certain degree, be further improved by the addition of a small amount of coupling agent, bis(3-triethoxysilylpropyl)tetrasulfane (TESPT). In the case of wet skid resistance measured using the British Portable Skid Tester, the data show that CSDPF gives better performance than the conventional fillers, with and without coupling agent.


2011 ◽  
Vol 84 (4) ◽  
pp. 565-579 ◽  
Author(s):  
Barun Kumar Samui ◽  
Manikanda Priya Prakasan ◽  
D. Chakrabarty ◽  
R. Mukhopadhyay

Abstract Hysteresis characteristics of high modulus low shrinkage (HMLS) polyester tire yarn and cord were evaluated to determine “specific work loss,” which indicate its heat generation characteristics. Test parameters were selectively chosen, considering the service conditions of high-speed passenger radial tires in which HMLS polyester tire cords are predominantly used. Specific work loss was found to increase exponentially with the increase in extent of stress relief. Dynamic property of this yarn and cord was also studied to determine “loss tangent (tan δ),” which influences rolling resistance of tires in service. A good correlation has been found between specific work loss of hysteresis test (a slow speed test) and tan δ of dynamic test (a high-speed test). Dynamic property of polyester dipped cord was investigated for a wide range of temperatures (100–180 °C) and frequencies (5–25 Hz). Tan δ at 100 °C was found to be relatively low and its magnitude remained at the same level for a wide range of frequencies. This is a favorable condition for the high-speed passenger radial tires, made out of HMLS polyester tire yarn. Microstructure of HMLS polyester yarn was analyzed. Crystallinity is around 43% (measured by Wide angle x-ray scattering); crystal width and long period are 61 and 142 Å, respectively.


1998 ◽  
Vol 26 (4) ◽  
pp. 241-257 ◽  
Author(s):  
H. Takino ◽  
H. Takahashi ◽  
K. Yamano ◽  
S. Kohjiya

Abstract Wet skid resistance for rubbers with a wide range of carbon black loadings and process oil loadings was investigated from the viewpoints of viscoelastic properties and abrasion properties. An analysis of wet skid resistance by the factors of Tα and BPST abrasion, which was effectively performed on a wide range of polymers in a previous report, gave a poor correlation this time. In the case of a wide range of carbon black loadings and oil loadings, the factors of tan δ and BPST abrasion had a good relationship with wet skid resistance. In this study, tan δ at 7°C was found to be a suitable factor corresponding to adhesion loss and hysteresis loss in rubber friction. By the evaluation of abrasions, BPST abrasion and PICO abrasion were estimated to be governed by different mechanisms.


1988 ◽  
Vol 61 (5) ◽  
pp. 842-865 ◽  
Author(s):  
J. M. Funt

Abstract A series of experiments have been run to determine which mechanisms dominate carbon black reinforcement of rubber. A broad range of compounds using oil-extended and non-oil-extended rubbers and carbon blacks covering the spectrum of tread blacks have been tested. The results for measurements made in an all-SBR formulation are reported here. The primary experiment consisted of measurement of the dynamic modulus and hysteresis of the cured and uncured compounds over a broad range of frequencies, temperatures, and strains. Ternperatures ranged from −70°C to +90°C; frequencies varied from 0.01 to 10 Hz; double strain amplitudes varied from 0.5% to 35%. From a discussion of the literature and evaluation of the experimental results, two mechanisms have been found to control the primary effects of carbon black on rubber reinforcement, where reinforcement refers to a general enhancement of properties, such as modulus, as well as the tensile strength of the compound. Hydrodynamic interaction, which is the increase in properties caused by the modification of strain fields in the region of an aggregate, dominates the large-strain dynamic and tensile properties of the compound. The primary carbon black variable in this mechanism is the effective aggregate size, such as measured by tint, which controls the effective volume loading of the carbon black at a given weight loading of carbon black. At low strains, the modulus is even higher than that predicted from the hydrodynamic-interaction/effective-volume model. This additional reinforcement is caused by the entanglement network formed between the tightly absorbed bound rubber on the carbon black surface and the bulk rubber far removed from the surface. The main carbon black variables in this mechanism are surface area and surface chemistry. The strain dependence of modulus is caused by the breaking and reforming of effective crosslinks in the rubber forming a transition zone between the bound rubber and the bulk rubber. To a large extent, this mechanism is dominated by the rubber properties, such as molecular weight and molecular-weight distribution. However, the dynamics of the entanglement network may be modified by altering specific interactions between carbon black and rubber.


Author(s):  
Jian-Shiuh Chen ◽  
Yang-Chou Sun ◽  
Min-Chih Liao ◽  
Chien-Chung Huang

Porous asphalt concrete (PAC) has an open-graded aggregate mixture to yield high air voids; PAC is mainly applied to the surface drainage layer on high-speed trafficked highway pavements. The objective of the study was to investigate the effect of binder types on the engineering properties and field performance of PAC mixtures. Three binder types were selected for a 19-mm nominal maximum aggregate size gradation: conventional asphalt AR-80, polymer-modified asphalt, and high-viscosity asphalt. A series of laboratory tests were conducted to evaluate the engineering properties of the PAC mixture, including permeability, resistance to draindown, resistance to disintegration, resistance to rutting, and resistance to indirect traction. A 3-km in-service test road was constructed to monitor the performance of PAC pavements using these three binders. Polymer-modified binder was shown to minimize abrasion loss and enhance the durability of the PAC mixture. Test results indicated that the use of polymer-modified binder, instead of unmodified binder, reduced rutting and raveling. When the mixture contained high-viscosity binder, it showed the best performance in the field. Field measurements indicated improved drainage as a result of replacement of the conventional asphalt AR-80 binder with the polymer-modified and high-viscosity binders. PAC pavement surfaces provided good frictional characteristics once the asphalt binder film was worn from the aggregate.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
P. Sadhukhan ◽  
J. B. Zimmerman

Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain “designing properties” including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.Rubber stocks and tire sections are subjected to heat under nitrogen atmosphere to 550°C for one hour and then cooled under nitrogen to remove polymers, leaving behind carbon black, silica and zinc oxide and 650°C to eliminate carbon blacks, leaving only silica and zinc oxide.


Sign in / Sign up

Export Citation Format

Share Document