Improved Slip-Resistance on Oil from Surface Roughness of Footwear

1983 ◽  
Vol 56 (4) ◽  
pp. 703-717 ◽  
Author(s):  
D. P. Manning ◽  
C. Jones ◽  
M. Bruce

Abstract This appears 10 be the first published investigation of friction measurements throughout the useful lives of footwear, and the changing patterns of slip-resistance found justify this approach. The polishing effect of walking on some surfaces needs further investigation, and there should now be an evaluation of friction relative to surface texture of soles and heels. It may be possible to engineer a permanent surface roughness by varying composition and size of spaces in a cellular structure. Although it is unlikely that any single material will prove to be satisfactory for all types of floor hazards, our experience with polyurethane is encouraging. If it proves impossible to find a single material giving adequate slip-resistance on wet or icy pavements, wet PVC tiles, ceramic tiles contaminated with grease and water, and factory floors contaminated with oil, then materials should be specified for each type of hazard.

2021 ◽  
Vol 10 (4) ◽  
pp. e4410413865
Author(s):  
Ana Virgínia Lot ◽  
Ana Paula Margarido Menegazzo ◽  
Camila Tavares Brasileiro ◽  
Fábio Gomes Melchiades ◽  
Anselmo Ortega Boschi

The characteristics of the floor surface profile are one of the factors that can be responsible for slip and fall accidents. To reduce the incidence of these accidents, it is essential to identify the profile features necessary for floor covering materials to be suitable for slipping risk areas. The objective of the present work was to investigate correlations between the slip resistance and the surface roughness of ceramic floor tiles. The slip resistance and the surface roughness of commercial ceramic tiles, with a diversity of surface finishes, were characterized by the pendulum method and contact profilometry, respectively. It was concluded that the presence of a large number of sharp peaks per unit of length of the profile is required for high slip resistance ceramic tiles. It was also found that the presence of waviness contributes to increasing the floors slip resistance even more. Through regression analysis, a good correlation between the pendulum results and the roughness parameter Ra was found.


2016 ◽  
Vol 861 ◽  
pp. 129-136 ◽  
Author(s):  
Anita Terjek

The objective of this study was to determine the affecting factors that can possibly change slipperiness of flooring. Laboratory slip resistance tests were conducted under different surface conditions. Two different methods were used to measure 6 different ceramic tiles. This article has its focus mainly on the required security and its quantification during the service life of floor coverings. Slip resistance of ceramic tiling can change with use. It is worth to investigate the effect of cleaning agents on slipperiness of floors, because it could be more dangerous when the cleaning process is in progress, so the surface is still in wet state or partly covered by liquid. This paper makes a comparative analysis on the different measurement methods and sliders that rub against the surface. In case of public and residential buildings slip resistance and surface roughness associated with cleanability, all have influence on safety in use and durability. The results showed that the perceived surface roughness parameters could be used as indicator of slipperiness and supplement objective measurement of this performance.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7064
Author(s):  
Ewa Sudoł ◽  
Marcin Małek ◽  
Mateusz Jackowski ◽  
Marcin Czarnecki ◽  
Cezary Strąk

The safety of the use of construction facilities should be a priority in today’s busy world, where it is not difficult to get involved in an accident. Most of them, due to the pace at which we live today, are caused by slips, trips, and falls. This work presents a detailed analysis of the resistance of ceramic floors to these events, taking into account the surface properties and conditions (dry/wet), which, as presented, have a significant impact on the final slip resistance values. This study also investigates the relationship between surface roughness and anti-slip properties. According to the obtained results, it can be concluded that the surface roughness is not the main determinant of slip resistance, and the final value of it is influenced by many components that should be considered together and not be neglected when designing the surface finish. Furthermore, based on experimental measurements, it can be noted that the highest slip resistance in both wet and dry conditions showed the unglazed tiles with lapatto finish and the glazed tiles without any extra finish.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1317
Author(s):  
Michal Skrzyniarz ◽  
Lukasz Nowakowski ◽  
Edward Miko ◽  
Krzysztof Borkowski

The shaping process of surface texture is complicated and depends on many factors and phenomena accompanying them. This article presents the author’s test stand for the measurement of relative displacements in a tool–workpiece system during longitudinal turning. The aim of this study was to determine the influence of edge radius on the relative displacement between the tool and workpiece. The cutting process was carried out with inserts with different edge radii for X37CrMoV5-1 steel. As a result of the research, vibration charts of the tool–workpiece system were obtained. In the range of feed 0.03–0.18 mm/rev, the values of the standard deviation of relative displacements in the x-axis were obtained in the range of 0.36–0.78 μm for the insert with an edge radius of rn = 48.8 μm. As a result of the work, it was determined that for the feed value of 0.12 mm/rev for all inserts, the relative displacements are the smallest. As the final effect, the formula for forecasting the Ra roughness parameter was presented.


2011 ◽  
Vol 189-193 ◽  
pp. 1538-1542
Author(s):  
Li Xiao Jia ◽  
Yong Zhen Zhang ◽  
Yong Ping Niu ◽  
San Ming Du ◽  
Jian Li

In order to decrease accidents of slips and falls, COFs of rubber samples with different surface roughness were measured by Brungraber Mark II. And the correlation coefficients between roughness parameters and COF were calculated. The rusults have shown that the COF increases with surface roughness and the correlation coefficient between Sq and COF is highest. In general, almost all the roughness parameters used in the study have high correlation with COF. Parameters had the highest correlation with COF depends on the materials used and test conditions.


1997 ◽  
Vol 81 (6) ◽  
pp. 2472-2479 ◽  
Author(s):  
Vilas N. Koinkar ◽  
Bharat Bhushan

2021 ◽  
pp. 1-25
Author(s):  
Burhan Afzal ◽  
Xueping Zhang ◽  
Anil Srivastava

Abstract Cylinder bore honing is a finishing process that generates a crosshatch pattern with alternate valleys and plateaus responsible for enhancing lubrication and preventing gas and oil leakage in the engine cylinder bore. The required functional surface in the cylinder bore is generated by a sequential honing process and is characterized by Rk roughness parameters (Rk, Rvk, Rpk, Mr1, Mr2). Predicting the desired surface roughness relies primarily on two techniques: (i) analytical models (AM) and (ii) machine learning (ML) models. Both of these techniques offer certain advantages and limitations. AM's are interpretable as they indicate distinct mapping relation between input variables and honed surface texture. However, AM's are usually based on simplified assumptions to ensure the traceability of multiple variables. Consequently, their prediction accuracy is adversely impacted when these assumptions are not satisfied. However, ML models accurately predict the surface texture but their prediction mechanism is challenging to interpret. Furthermore, the ML models' performance relies heavily on the representativeness of data employed in developing them. Thus, either prediction accuracy or model interpretability suffers when AM and ML models are implemented independently. This study proposes a hybrid model framework to incorporate the benefits of AM and ML simultaneously. In the hybrid model, an Artificial neural network (ANN) compensates the AM by correcting its error. This retains the physical understanding built into the model while simultaneously enhancing the prediction accuracy. The proposed approach resulted in a hybrid model that significantly improved the prediction accuracy of the AM and additionally provided superior performance compared to independent ANN.


Author(s):  
Yun Huang ◽  
Shaochuan Li ◽  
Guijian Xiao ◽  
Benqiang Chen ◽  
Yi He ◽  
...  

Abstract As the core component of aero-engine, the service performance of aero-engine blade has an important influence on the engine’s reliability and safety performance. Existing studies have shown that machined surface characteristics affect the fatigue strength of components. However, current studies are all based on regular fatigue samples. The structure of blades different from fatigue samples, and the influence mechanism of structural differences on the service performance of blades is still unclear. In addition, the conventional fatigue test conditions are not representative for the blades’ actual service conditions, so it is difficult to realize the processing process for the service performance optimization. In this study, the aero-engine blades processed by abrasive belt grinding and the vibration fatigue test bench were used to explore the influence of surface roughness, surface texture, and surface residual stress on the fatigue performance of aero-engine blades under actual working conditions. The aero-engine blades were ground with different process parameters to obtain different single-factor surface characteristics. By comparing the vibration fatigue life of blades with different surface features, the influence degree of each surface feature on the fatigue life was explored. Results showed that surface roughness has the greatest influence on fatigue strength, followed by residual stress, and surface texture has the least influence on fatigue strength.


2019 ◽  
Vol 39 (9) ◽  
pp. 805-812
Author(s):  
Toshio Igarashi ◽  
Soichiro Ohno ◽  
Sayaka Oda ◽  
Satoru Hirosawa ◽  
Yusuke Hiejima ◽  
...  

Abstract Friction measurements have been carried out to characterize surface damages during photodegradation of low-density polyethylene. The average and mean deviation of the friction coefficients increase with the irradiation time in the early stage of photodegradation processes, indicating the increase in the surface roughness, whereas the mechanical properties remain essentially unchanged. In the following stage, where the ductile-brittle transition takes place, the mean deviation of the friction coefficients shows an appreciable decrease with maintaining almost constant average values, suggesting that the surface becomes more homogeneous. Beyond the ductile-brittle transition, both of the average and mean deviation of the friction coefficients gradually increase with the irradiation time, indicating further enhancement of surface roughness, followed by formation of surface cracks. The soundness of the friction measurements is confirmed by comparing with optical measurements of the surface roughness, and it is suggested that the present method gives a convenient and sensitive method of detection for degradation in polymeric materials.


Sign in / Sign up

Export Citation Format

Share Document