Wire Adhesion Testing

1972 ◽  
Vol 45 (1) ◽  
pp. 16-25 ◽  
Author(s):  
L. C. Coates ◽  
C. Lauer

Abstract The results of this study are conclusive. The ASTM D-2229 Test Method is not a reliable test for measuring adhesion of wire cords to rubber compounds. However, by using the basic design and modifying it, an accurate measurement of bond strength on a macroscopic level can be obtained. This test is insensitive for all practical purposes to compound physical properties and changes in cord diameter and embedded length—for both stranded and rod-like cords. It is also possible with this test to calculate the amount of stress that is exerted on the surface of the wire cord to determine the relationship between failing stress and the material strength of the rubber compound. Properly used, this new test should give the compounder a better tool to study the adhesion of compounds to metal.

1994 ◽  
Vol 67 (2) ◽  
pp. 217-236 ◽  
Author(s):  
Timothy A. Okel ◽  
Walter H. Waddell

Abstract The effectiveness of predicting rubber performance based on measured silica physical properties in silica- and carbon black-filled compounds is presented for three rubber formulations: an off-the-road tire tread, a wire coat stock and a V-belt. Correlation and regression analyses were performed using SAS software for sixteen physical properties of thirteen precipitated silicas, and sixteen rubber compound performance characteristics of the three compounds. Silica physical properties studied include various measurements of surface area and structure, particle size, pH and impurities. Rubber performance characteristics studied include cure properties and physical properties such as stress/strain, tear strength, cut growth resistance, abrasion resistance and heat build-up. The present study confirms that silica surface area is the single best predictor of the effect that varying silica physical properties have on the physical performance of cured, carbon black-filled rubber compounds containing precipitated silica. Silica structure, as measured by DBP absorption and nitrogen or mercury pore volume, is a secondary predictor of certain rubber physical properties. The confidence limits of the predictions is dependent upon the concentration of precipitated silica used in the carbon black-filled rubber compound.


1936 ◽  
Vol 9 (4) ◽  
pp. 597-604
Author(s):  
C. E. Barnett

Abstract The importance of flow in rubber on the reinforcing properties of pigmented systems has been emphasized by Park. He suggests that: (1) in the presence of a finely divided pigment, the flow which occurs when a piece of rubber is stretched takes place in the capillary spaces between the pigment particles; (2) some modification of the laws of liquid flow may govern the behavior of rubber with reference to pigments embedded in it, and (3) the forces causing increased stiffness in pigmented rubber compounds are similar to those causing increased resistance to flow of liquids iii tubes of capillary dimensions. Thus increasing fineness of subdivision and the resulting fineness of capillary spaces between the particles should be accompanied by an increase in reinforcing properties. It would be desirable to study the actual stresses around pigment particles in rubber under strain, but so far no suitable microscopic set-up has beem devised. A few years ago the writer, resorting to analogies, measured the strains and stresses around large particles with the assumption that the strains would be relatively the same with small particles. For this study, holes of the desired size and shape were cut in strips of calendered but uncured rubber and fitted with pieces of an uncured semihard rubber compound. After vulcanization squares were marked on the tensile sheets as shown in Fig. 1.


Author(s):  
Koji Okamoto ◽  
Michiharu Toh ◽  
Xiaobin Liang ◽  
Ken Nakajima

ABSTRACT The effects of the masticated state of isoprene rubber (IR) at the carbon black (CB) addition stage on subsequent mixing, microstructure, and physical properties in the case of a kneader with a characteristic large-diameter shaft are investigated by examining the mastication-time dependence. A sufficiently masticated IR shows a shorter black incorporation time, which results in an improved dispersion of CB and better physical properties. Observing the microstructure of a rubber compound using the atomic force microscope–based nanomechanical technique, poor CB dispersion is revealed for insufficient mastication. Specifically, large CB agglomerations surrounded by the interfacial rubber region with higher elastic modulus than that of a rubber matrix are formed. Such a large CB agglomeration, on the other hand, does not appear in rubber compounds with longer mastication times. The thickness of the interfacial region becomes shorter in these cases. These observations are further discussed by the concept of “rheological unit” introduced by Mooney et al. This study demonstrates that the microstructure of a rubber compound is highly heterogenous with rubber regions of different microscopic elastic moduli and that the microstructure has an influence on CB dispersion and the physical properties of rubber.


2020 ◽  
Vol 21 (2) ◽  
pp. 69
Author(s):  
Abu Hasan ◽  
Martha Aznury ◽  
Indah Purnamasari ◽  
Muhammad Zaman ◽  
Robert Junaidi ◽  
...  

COMPARISON OF RUBBER MILLING PROCESS TO PRODUCE NATURAL RUBBER COMPOUNDS USING MODIFIED AND UNMODIFIED LOCAL CLAY FILLER. Many researchers have studied the effect of modified clay as filler on rubber compounds for both natural rubber and synthetic rubber. Various chemicals are used as clay modifiers. In the rubber milling process, modified clay is directly used as filler after pretreatment with clay modifier. However, clay modifiers can also be milled together with original clay during the rubber mastication and milling process. Thus both of these methods certainly produce different physical properties, so the comparison of the two rubber milling processes is the focus of this research. The analysis of the curing characteristics and physical properties of vulcanized natural rubber was carried out with a rheometer and physical properties test units. Thermal analysis was carried out using TG/DTA and dispersion of filler on the rubber compound was analyzed by SEM. The results of the curing characteristic of the rubber compound and the physical properties of vulcanization showed that there was an effect due to the comparison of the rubber milling process. Modified clay using JH-S69 is better than JH-S69 milled with original clay and vice versa occurs in PEG 4000 which is used as clay modifier. PEG 4000 which is milled together with original clay produces curing characteristic and physical properties of vulcanization better than pretreatment of clay to be modified clay. This analysis is in line with the analysis using SEM.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 24-28
Author(s):  
CORY JAY WILSON ◽  
BENJAMIN FRANK

TAPPI test T811 is the specified method to ascertain ECT relative to box manufacturer’s certification compliance of corrugated fiberboard under Rule 41/ Alternate Item 222. T811 test sample heights were derived from typical board constructions at the time of the test method’s initial development. New, smaller flute sizes have since been developed, and the use of lighter weight boards has become more common. The T811 test method includes sample specifications for typical A-flute, B-flute, and C-flute singlewall (and doublewall and triplewall) structures, but not for newer thinner E-flute or F-flute structures. This research explores the relationship of ECT sample height to measured compressive load, in an effort to determine valid E-flute and F-flute ECT sample heights for use with the T811 method. Through this process, it identifies challenges present in our use of current ECT test methods as a measure of intrinsic compressive strength for smaller flute structures. The data does not support the use of TAPPI T 811 for ECT measurement for E and F flute structures, and demonstrates inconsistencies with current height specifi-cations for some lightweight B flute.


1986 ◽  
Vol 14 (4) ◽  
pp. 201-218 ◽  
Author(s):  
A. G. Veith

Abstract This four-part series of papers addresses the problem of systematic determination of the influence of several tire factors on tire treadwear. Both the main effect of each factor and some of their interactive effects are included. The program was also structured to evaluate the influence of some external-to-tire conditions on the relationship of tire factors to treadwear. Part I describes the experimental design used to evaluate the effects on treadwear of generic tire type, aspect ratio, tread pattern (groove or void level), type of pattern (straight rib or block), and tread compound. Construction procedures and precautions used to obtain a valid and functional test method are included. Two guiding principles to be used in the data analyses of Parts II and III are discussed. These are the fractional groove and void concept, to characterize tread pattern geometry, and a demonstration of the equivalence of wear rate for identical compounds on whole tread or multi-section tread tires.


2011 ◽  
Vol 65 (12) ◽  
pp. 1293-1297
Author(s):  
Keiko Hashiguchi ◽  
Takehiro Yoshimatsu ◽  
Masanori Kawashima

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3550
Author(s):  
Aerin Choi ◽  
Kyung-Hyeon Yoo ◽  
Seog-Young Yoon ◽  
Bong-Soo Park ◽  
In-Ryoung Kim ◽  
...  

Self-adhesive resins (SARs) contain adhesives, which simplify the procedures of resin application, and primers, which provide sufficient bonding ability. In this study, mesoporous bioactive glass nanoparticles (MBN) were added to a SAR to easily improve the physical properties and remineralization ability. The experimental resins comprised 1%, 3%, and 5% MBN mixed in Ortho Connect Flow (GC Corp, Tokyo, Japan). As the MBN content in the SAR increased, the microhardness increased, and a statistically significant difference was observed between the cases of 1% and 5% MBN addition. Shear bond strength increased for 1% and 3% MBN samples and decreased for 5% MBN. The addition of MBN indicated a statistically significant antibacterial effect on both gram-negative and gram-positive bacteria. The anti-demineralization experiment showed that the remineralization length increased with the MBN content of the sample. Through the above results, we found that SAR containing MBN has antibacterial and remineralization effects. Thus, by adding MBN to the SAR, we investigated the possibility of orthodontic resin development, wherein the strength is enhanced and the drawbacks of the conventional SAR addressed.


2010 ◽  
Vol 152-153 ◽  
pp. 1058-1061
Author(s):  
Zhou Wei ◽  
Xiao Xia Zhang

A wedged load test method is used to evaluate the adhesion strength of high-strength coatings, which have been processed with various sintering parameters. In this test, for stress concentration at cut tip, cracks are always induced and expanded rapidly cross the interface between coating and substrate. Macro-fracture and SEM image of coating interface of high-strength coating are characterized using optical microscope and scanning electron microscopy (SEM), respectively. In order to evaluate the bonding properties between coating and substrate effectively, corresponding finite element (FE) analysis has been conducted to evaluate the adhesion strength of high-strength coating. And stress distributions cross the interface of high-strength coating are obtained. The stress analysis can help to evaluate the bond strength of high-strength coating. Because of small specimen and contact relationship between wedged pressure head and wedged cuts, complex stress state is affected by many factors resulting from interface, and also by the thickness of coating.


Sign in / Sign up

Export Citation Format

Share Document