scholarly journals POTENTIAL USE OF MANGO GUM (MANGIFERA INDICA) IN PHARMACOLOGICAL SYSTEMS

2019 ◽  
Vol 16 (33) ◽  
pp. 688-706
Author(s):  
M. C. A. SILVEIRA ◽  
R. S. L. GLÓRIA ◽  
K. M. BARBOSA ◽  
L. S. S. SANTOS

The possibility of using natural or modified polymers to formulate drug-containing nanocapsules is a pharmaceutical option for cases in which an increase in the half-life of medications in the body and a decrease in side effects is required, and may also be used for better pharmacological targeting of the site. Related to low production costs with these characteristics and renewable availability. Gums and mucilages have been studied for use in natural alternative drug delivery systems. The gum from the trunk of Mangifera indica has few studies aimed at this purpose, although it has shown promising results in previous studies. Characterization of the gum formation pathways are explained, as well as their extraction and purification. The similarity of properties of Acacia gum widely used in tablet blends has been confirmed. Mangifera indica gum was also used for accelerated drug release. The versatility of this gum is associated with the presence of mucilage. Chemical modifications of the Mangifera indica gum and mixtures among other gums may be made to adapt their properties to the various forms of controlled drug release. Several isolated compounds with pharmaceutical properties are demonstrated. Physical chemical characteristics of several articles on this gum have been compiled. The techniques already used for the formation of nanocapsules through Mangifera indica gum are presented. Several studies have been reported specifically using Mangifera indica gum from the Mango trunk used as drug release. These studies justify a summary of the pharmaceutical properties for drug delivery already performed with this gum. Complementary studies for utilization and valorization of Mango cultivation are suggested.

2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-81
Author(s):  
Sajana Manandhar ◽  
Erica Sjöholm ◽  
Johan Bobacka ◽  
Jessica M. Rosenholm ◽  
Kuldeep K. Bansal

Since the last decade, the polymer-drug conjugate (PDC) approach has emerged as one of the most promising drug-delivery technologies owing to several benefits like circumventing premature drug release, offering controlled and targeted drug delivery, improving the stability, safety, and kinetics of conjugated drugs, and so forth. In recent years, PDC technology has advanced with the objective to further enhance the treatment outcomes by integrating nanotechnology and multifunctional characteristics into these systems. One such development is the ability of PDCs to act as theranostic agents, permitting simultaneous diagnosis and treatment options. Theranostic nanocarriers offer the opportunity to track the distribution of PDCs within the body and help to localize the diseased site. This characteristic is of particular interest, especially among those therapeutic approaches where external stimuli are supposed to be applied for abrupt drug release at the target site for localized delivery to avoid systemic side effects (e.g., Visudyne®). Thus, with the help of this review article, we are presenting the most recent updates in the domain of PDCs as nanotheranostic agents. Different methodologies utilized to design PDCs along with imaging characteristics and their applicability in a wide range of diseases, have been summarized in this article.


2021 ◽  
Author(s):  
Lingzi Liu ◽  
Xiaoyan Sun ◽  
Baofen Ye ◽  
Zhengyu Yan

Particle-based delivery system has merged as a powerful platform in controlled drug release. The present study developed a new inverse opal hydrogel microcarriers system composed of gold nanorods (AuNRs) for...


2020 ◽  
Vol 11 (19) ◽  
pp. 3296-3304
Author(s):  
Jinkang Dou ◽  
Ruiqi Yang ◽  
Kun Du ◽  
Li Jiang ◽  
Xiayun Huang ◽  
...  

Ultrasound-controlled drug release is a very promising technique for controlled drug delivery due to the unique advantages of ultrasound as the stimulus.


2018 ◽  
Vol 244 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Stephen J. Jones ◽  
Annette F. Taylor ◽  
Paul A Beales

Nanomedicines for controlled drug release provide temporal and spatial regulation of drug bioavailability in the body. The timing of drug release is usually engineered either for slow gradual release over an extended period of time or for rapid release triggered by a specific change in its physicochemical environment. However, between these two extremes, there is the desirable possibility of adaptive nanomedicines that dynamically modulate drug release in tune with its changing environment. Adaptation and response through communication with its environment is a fundamental trait of living systems; therefore, the design of biomimetic nanomedicines through the approaches of bottom-up synthetic biology provides a viable route to this goal. This could enable drug delivery systems to optimize release in synchronicity with the body’s natural biological rhythms and the personalized physiological characteristics of the patient, e.g. their metabolic rate. Living systems achieve this responsiveness through feedback-controlled biochemical processes that regulate their functional outputs. Towards this goal of adaptive drug delivery systems, we review the general benefits of nanomedicine formulations, provide existing examples of experimental nanomedicines that encapsulate the metabolic function of enzymes, and give relevant examples of feedback-controlled chemical systems. These are the underpinning concepts that hold promise to be combined to form novel adaptive release systems. Furthermore, we motivate the advantages of adaptive release through chronobiological examples. By providing a brief review of these topics and an assessment of the state of the art, we aim to provide a useful resource to accelerate developments in this field. Impact statement The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel “chrononanomedicines.”


Author(s):  
Aravinthrajkumar G ◽  
Gayathri R ◽  
Vishnupriya V

  The challenge of drug delivery is the liberation of drug agents at the right time in a safe and reproducible manner, usually to a specific target site. Conventional dosage forms, such as orally administered pills and subcutaneous or intravenous injection, are the predominant routes for drug administration. However, pills and injections offer limited control over the rate of drug release into the body; usually, they are involved in an immediate release of the drug. This article is about how nanoparticles can be used as an effective drug delivery system to target the drug to a specific location or organ.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 175
Author(s):  
Priyanka Prakash ◽  
Wing-Hin Lee ◽  
Ching-Yee Loo ◽  
Hau Seung Jeremy Wong ◽  
Thaigarajan Parumasivam

Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers’ natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.


2018 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Jessica Oliveira ◽  
Raquel Rodrigues ◽  
Lillian Barros ◽  
Isabel Ferreira ◽  
Luís Marchesi ◽  
...  

In this study, hydrophilic magnetic nanoparticles were synthesized by green routes using a methanolic extract of Rubus ulmifolius Schott flowers. The prepared magnetic nanoparticles were coated with carbon-based shell for drug delivery application. The nanocomposites were further chemically functionalized with nitric acid and, sequentially, with Pluronic® F68 (CMNPs-plur) to enhance their colloidal stability. The resulting material was dispersed in phosphate buffer solution at pH 7.4 to study the Doxorubicin loading. After shaking for 48 h, 99.13% of the drug was loaded by the nanocomposites. Subsequently, the drug release was studied in different working phosphate buffer solutions (i.e., PB pH 4.5, pH 6.0 and pH 7.4) to determine the efficiency of the synthesized material for drug delivery as pH-dependent drug nanocarrier. The results have shown a drug release quantity 18% higher in mimicking tumor environment than in the physiological one. Therefore, this study demonstrates the ability of CMNPs-plur to release a drug with pH dependence, which could be used in the future for the treatment of cancer "in situ" by means of controlled drug release.


2008 ◽  
Vol 61 (9) ◽  
pp. 675 ◽  
Author(s):  
Anwen M. Krause-Heuer ◽  
Maxine P. Grant ◽  
Nikita Orkey ◽  
Janice R. Aldrich-Wright

An ideal platinum-based delivery device would be one that selectively targets cancerous cells, can be systemically delivered, and is non-toxic to normal cells. It would be beneficial to provide drug delivery devices for platinum-based anticancer agents that exhibit high drug transport capacity, good water solubility, stability during storage, reduced toxicity, and enhanced anticancer activity in vivo. However, the challenges for developing drug delivery devices include carrier stability in vivo, the method by which extracellular or intracellular drug release is achieved, overcoming the various mechanisms of cell resistance to drugs, controlled drug release to cancer cells, and platinum drug bioavailability. There are many potential candidates under investigation including cucurbit[n]urils, cyclodextrins, calix[n]arenes, and dendrimers, with the most promising being those that are synthetically adaptable enough to attach to targeting agents.


Sign in / Sign up

Export Citation Format

Share Document