Synthesis of Nanocrystalline Copper Oxide using Copper (II) Semicarbazone Derivative

Author(s):  
Paritosh K. Rana ◽  
Suhas P. Janwadkar ◽  
Dilip K. Yadav

The Semicarbazone derivatives of 2-4, dihydroxy acetophenone is synthesized and characterized by physico‐chemical techniques such as melting point, Ultra Violet‐Visible Spectrophotometer, Fourier Transform Infra-Red (FTIR), proton nuclear magnetic resonance (1HNMR) spectroscopy and used as a chelating agent to form complex with Copper as Copper (II) semicarbazone derivative. The synthesised Copper (II) semicarbazone complex was also studied for its complex formation IR analysis, decomposition studies using TGA. The synthesised Copper (II) semicarbazone complex was successfully employed as precursor for synthesis of nano crystalline Copper oxide and its formation was confirmed by UV-Visible spectroscopy and XRD analysis. The method successfully employed use of Copper (II) semicarbazone complex for synthesis of nano Copper oxide.

Author(s):  
M. E. Snook ◽  
R. F. Severson ◽  
R. F. Arrendale ◽  
H. C. Higman ◽  
O. T. Chortyk

AbstractThe methyl, multi-methyl, and ethyl derivatives of the polynuclear aromatic hydrocarbons (PAH) of cigarette smoke condensate (CSC) were isolated from the neutrals by silicic acid chromatography, solvent partitioning and gel chromatography. The procedure yielded a relatively pure PAH isolate amenable to further identifications. The multi-alkylated PAH were concentrated in the early gel fractions with parent and higher ring PAH found in subsequent gel fractions. It was shown that CSC is very rich in alkylated PAH, and their successful identification required extensive use of gas and liquid chromatography and ultra-violet and GC - mass spectrometric techniques. High-pressure liquid chromatography (HPLC) separated individual isomers of the alkylated PAH in complex GC peaks. PAH from indene to pentamethylchrysene were found. This report concludes our identification studies on the PAH of CSC and complements our two previous reports in this journal. Collectively, our studies have identified approximately 1000 PAH of cigarette smoke condensate and have led to the development of methods for the routine quantitation of PAH in smalI quantities of cigarette smoke condensate.


Author(s):  
Monika Vats ◽  
Shruti Bhardwaj ◽  
Arvind Chhabra

Background & Objective: Nanoparticles are used in cosmetic and dermatologic products, due to better skin penetration properties. Incorporation of natural products exhibiting medicinal properties in nano-preparations could significantly improve efficacy of these products and improve the quality of life without the side effects of synthetic formulations. Methods: We here report green synthesis of Copper Oxide nanoparticles, using Cucumber extract, and their detailed biophysical and bio-chemical characterization. Results: These Copper Oxide-Cucumber nanoparticles exhibit significant anti-bacterial and anti-fungal properties, Ultra Violet-radiation protection ability and reactive-oxygen species inhibition properties. Importantly, these nanoparticles do not exhibit significant cellular toxicity and, when incorporated in skin cream, exhibit skin rejuvenating properties. Conclusion: Our findings have implications for nanoparticle-based cosmetics and dermatologic applications.


2005 ◽  
Vol 903 ◽  
Author(s):  
Victor A. Golubev ◽  
Andrey V. Strikanov ◽  
Grigory A. Potemkin ◽  
Ludmila V. Zueva ◽  
Aleksey V. Golubev ◽  
...  

AbstractThe Dynamic Compacting (DC) method is promising method to produce considerable-size nonporous wares. The phenomenon is based on the impact of shock wave on the initial powders of amorphous alloys. Every time when the shock wave propagates through the bulk of substance then the temperature rises substantially. Therefore there is a need of study of the DC’s effect on the structure and properties of the amorphous alloys. The results of the thermal analysis (in particular, Differential Scanning Calorimetry) of the samples of the soft magnetic alloys are presented in the report. These results concern with amorphous alloys of 5BDSR, GM414, 10NSR trademarks before DC and after DC, respectively. It is shown there is single low-temperature endothermic peak (near 300C) and there are several high temperature exothermic peaks (near 540C, 650C, and 700C). The first peak is related to glass-transition, the following peaks are related to formation of nano-crystalline phases. It was proved by XRD analysis data. The optimal regimes of the thermal processing of final wares were chosen on the base of thermal- and XRD-analysis. The study of the effects of these regimes on the properties (magnetic conductivity, specific losses etc.) of the circular magnetic conductors was executed. In particular, thermal- as well as thermo-magnetic processing of magnetic conductors based on 5BDSR amorphous alloy (after DC) essentially improves their magnetic properties. For example, magnetic conductivity fÝ increases approximately by factor 17 with respect to the magnitude before DC.


2011 ◽  
Vol 391-392 ◽  
pp. 973-977
Author(s):  
Jing Mao ◽  
Ke Hua Dai ◽  
Yu Chun Zhai

Li(Ni1/3Co1/3Mn1/3)O2material with high rate capability was synthesized by a novel gel-combustion method using polyvinylpyrrolidone as a polymer chelating agent and a fuel. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to study the structure, morphology and element distribution of the Li(Ni1/3Co1/3Mn1/3)O2material. XRD analysis showed that all samples were α-NaFeO2structure and Li(Ni1/3Co1/3Mn1/3)O2prepared at 900 °C had the highest c/a of 4.977 indicating the highest layered-ness. EDS scan demonstrated that the precursor was homogeneous. SEM images indicated all samples were well crystallized. Charge and discharge tests showed all samples had good rate capability. Among them, Li(Ni1/3Co1/3Mn1/3)O2prepared at 900 °C had the highest capacity and the best rate capability. It delivered 162.1 mAh•g−1at 0.25 C between 2.5 and 4.3 V and the capacity retention was about 81% compared to that of 0.25C rate.


Author(s):  
A. A Patil ◽  
M. K. Shirsat ◽  
V. R. Salunkhe

In the world of pharmacology, the prescription of a medicine and its dosage play important role. Different physico-chemical methods are in vogue in describing the interactions of the drug molecule with host target among them, the chief being spectroscopic, chromatographic and quantum mechanical techniques. Skeletal muscle relaxants are divided into two categories: antispastic (for conditions such as cerebral palsy and multiple sclerosis) and antispasmodic agents (for musculoskeletal conditions). Antispastic agents (e.g., baclofen [Lioresal], dantrolene [Dantrium]) should not be prescribed for musculoskeletal conditions because there is sparse evidence to support their use. Rather, anantispasmodic agent may be more appropriate Many of the studies evaluating the effectiveness of skeletal muscle relaxants are hampered by poor methodologic design, including incomplete reporting of compliance, improper or no mention of allocation concealment, not utilizing intention-to-treat methods, and inadequate randomization. skeletal muscle relaxants have been evaluated in systematic reviews and meta-analyses.These include Methocarbamol, Meprobamate, Metaxalone, Carisoprodol, Dantrium and Baclofen. Chemically Carisoprodol is N-isopropyl-2-methyl-2-propyl-1,3-propanediol dicarbamate. Methods like nitration, Sulphonation, Methylation, Esterification, Acetylation and Diazotization was used for formation of new derivative which can be detected in UV region. Different reactions of diazotization were used for getting a new and novel derivative of Carisoprodol. Physiochemical properties, TLC, UV, IR and NMR analysis of Carisoprodol and newly obtained derivatives of Carisoprodol was studied and it showed that there was change in color, odour, taste, melting point, solubility pattern of original drug and derivatives.


2015 ◽  
Vol 35 ◽  
pp. 21-26 ◽  
Author(s):  
Susmita Das ◽  
Vimal Chandra Srivastava

Metal oxide nanocomposite (ZnO-CuO) was successfully synthesized by one step homogeneous coprecipitation method and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), X-ray diffraction analysis (XRD) and UV-visible diffuse reflectance spectra. XRD analysis exhibited presence of pure copper oxide and zinc oxide within the nanocomposite. SEM analysis indicated that the ZnO-CuO nanocomposite was consisted of flower shaped ZnO along with leaf shaped CuO. Photocatalytic activity of nanocomposite was evaluated in terms of degradation of methylene blue (MB) dye solution under ultra-violet radiation. Results showed that the photocatalytic efficiency of ZnO-CuO nanocomposite was higher than its individual pure oxides (ZnO or CuO).


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 60 ◽  
Author(s):  
Muhammad Ahad ◽  
Muhammad Ashraf ◽  
Rabinder Kumar ◽  
Mukhtar Ullah

Mass concrete has been commonly known for its thermal stresses which arise due to the entrapment of hydration temperature susceptible to thermal cracking. The utilization of mineral additives is a promising and widely adopted technique to mitigate such effects. This paper presents the thermal, physico-chemical, mechanical, and morphological behaviour of mass concrete with blends of bentonite (BT) and fly ash (FA). Apart from the rise in temperature due to hydration, the compressive strength, ultrasonic pulse velocity (UPV), differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and microstructure were studied. The results of this study revealed that the substitution of BT and FA significantly improved the compressive strength and development rate of UPV in the mass concrete samples. The FA concrete (FC) specimen presented the lowest temperature during the peak hours compared to all other concrete mixes studied in this research. Bentonite concrete (BC) was also found to be more effective in controlling the escalation of temperature in mass concrete. Scan electron microscopy (SEM) micrographs presented partially reacted FA particles in a mix. XRD and DTA analysis indicated that the concentration of calcium hydroxide (CH) declined by substituting FA and BT, specifically in ternary blends, which was due to the dilution effect and consumption of CH through the pozzolanic reaction.


Sign in / Sign up

Export Citation Format

Share Document