Agro morphological diversity of Yams (Dioscorea spp.) Landraces from Southwest Ethiopia assessed through quantitative and qualitative traits

Author(s):  
Tewodros Mulualem ◽  
Firew Mekbib ◽  
Shimelis Hussein ◽  
Endale Gebre

Yams (Dioscorea spp.) are an important crop widely cultivated for food, feed and medicine in different areas of the world. Knowledge on genetic diversity among yam landraces is essential for breeding and conservation strategies. The objective of this study was to assess the level of genetic diversity present among yam landraces using morphological traits. Thirty-six yam landraces were phenotyped at at Jimma Agricultural Research Center during 2015/16 growing season. The experiment was laid out in 6x6 simple lattice design with two replications. Data were collected on nine quantitative and ten qualitative traits, and subjected to hierarchal cluster, correlation and principal component analyses. A dendrogram was constructed using the unweighted pair group method with arithmetic mean. Tuber fresh weight showed a positive and significant association with tuber length and tuber diameter. The principal component analysis revealed five important principal components that accounted for 56.9% of the total variation observed among landraces. Principal components 1, 2, 3, 4 and 5, respectively, correlated with leaf length, leaf width and vine length A dendrogram revealed three main clusters of landraces. The most diverse landraces identified were 27/02, 21/02, 06/2000 and 68/02, which are useful for breeding and conservation. The diversity observed among the yam landraces could be useful in improvement of yams for various traits.

2020 ◽  
Vol 2 (1) ◽  
pp. 34-50
Author(s):  
Ebrahim Seid Hussen ◽  
Wassu Mohammed Ali ◽  
Tessfaye Abebe Desta

Potato (Solanum tuberosum L.) is a versatile crop and a source of inexpensive energy in the human diet in many countries. It can be used as fresh products and commercially processed foods such as French fries and chips. Potato varieties development research previously conducted in Ethiopia related to processing quality were limited in their scope of quality parameters. This experiment was conducted at Holetta Agricultural Research Centre, Ethiopia during the main crop season of 2017. Twenty-four potato genotypes were evaluated for 23 quantitative and six qualitative traits in randomized complete block design with three replications to determining the nature and magnitude of common genetic diversity and to screen out genetically diverse parents by using cluster and principal component analysis. The first eight principal components accounted for 90.26% of the observed variations among 24 potato genotypes. The first three PC accounted for 60.43% of the variation. The genetic distances among the 24 potato genotypes ranged from 3.40 to 11.80 and the genotypes were grouped into eight clusters based on quantitative and qualitative traits. Cluster II consisted of 25%, Cluster IV, I, III contained 20.83%, 16.67% and 12.5% of genotypes, respectively, while Cluster VI, VII and VIII each consisted of one genotype. In conclusion, genotypes grouped under Cluster II and VIII worth further evaluation to obtain genotypes with highest total tuber yield, the specific gravity of tuber, dry matter content, total starch content, acceptable tuber physical and frying quality with other desirable traits.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 680
Author(s):  
Thuy T. P. Mai ◽  
Craig M. Hardner ◽  
Mobashwer M. Alam ◽  
Robert J. Henry ◽  
Bruce L. Topp

Macadamia is a recently domesticated Australian native nut crop, and a large proportion of its wild germplasm is unexploited. Aiming to explore the existing diversity, 247 wild accessions from four species and inter-specific hybrids were phenotyped. A wide range of variation was found in growth and nut traits. Broad-sense heritability of traits were moderate (0.43–0.64), which suggested that both genetic and environmental factors are equally important for the variability of the traits. Correlations among the growth traits were significantly positive (0.49–0.76). There were significant positive correlations among the nut traits except for kernel recovery. The association between kernel recovery and shell thickness was highly significant and negative. Principal component analysis of the traits separated representative species groups. Accessions from Macadamia integrifolia Maiden and Betche, M. tetraphylla L.A.S. Johnson, and admixtures were clustered into one group and those of M. ternifolia F. Muell were separated into another group. In both M. integrifolia and M. tetraphylla groups, variation within site was greater than across sites, which suggested that the conservation strategies should concentrate on increased sampling within sites to capture wide genetic diversity. This study provides a background on the utilisation of wild germplasm as a genetic resource to be used in breeding programs and the direction for gene pool conservation.


2020 ◽  
Vol 49 (6) ◽  
pp. 1083-1092
Author(s):  
S Goitom ◽  
M.G. Gicheha ◽  
F.K. Njonge ◽  
N Kiplangat

Indigenous cattle play a vital role in subsistence and livelihood of pastoral producers in Eritrea. In order to optimally utilize and conserve these valuable indigenous cattle genetic resources, the need to carry out an inventory of their genetic diversity was recognized. This study assessed the genetic variability, population structure and admixture of the indigenous cattle populations (ICPs) of Eritrea using a genotype by sequencing (GBS) approach. The authors genotyped 188 animals, which were sampled from 27 cattle populations in three diverse agro-ecological zones (western lowlands, highlands and eastern lowlands). The genome-wide analysis results from this study revealed genetic diversity, population structure and admixture among the ICPs. Averages of the minor allele frequency (AF), observed heterozygosity (HO), expected heterozygosity (HE), and inbreeding coefficient (FIS) were 0.157, 0.255, 0.218, and -0.089, respectively. Nei’s genetic distance (Ds) between populations ranged from 0.24 to 0.27. Mean population differentiation (FST) ranged from 0.01 to 0.30. Analysis of molecular variance revealed high genetic variation between the populations. Principal component analysis and the distance-based unweighted pair group method and arithmetic mean analyses revealed weak substructure among the populations, separating them into three genetic clusters. However, multi-locus clustering had the lowest cross-validation error when two genetically distinct groups were modelled. This information about genetic diversity and population structure of Eritrean ICPs provided a basis for establishing their conservation and genetic improvement programmes. Keywords: genetic variability, molecular characterization, population differentiation


Author(s):  
Deepak Gupta ◽  
Suresh Muralia ◽  
N.K. Gupta ◽  
Sunita Gupta ◽  
M.L. Jakhar ◽  
...  

Background: Mungbean is a short duration grain legume widely grown in south and Southeast Asia. The extent of variability through Principal Component Analysis (PCA) and cluster analysis in promising mungbean genotypes should be known for possible yield improvement. A study was undertaken to work out the extent of variability among twenty four mungbean genotypes through cluster analysis and Principal Component Analysis (PCA). Methods: The experiment was laid out in a randomized block design with three replications during kharif 2018 and 2019 at the experimental field of Agricultural Research Station, Navgaon (Alwar) under rainfed condition. Result: Principal component analysis revealed that the first three main PCAs amounted 78.80% of the total variation among genotypes for different traits. Out of total principal components, PC1 accounts for maximum variability in the data with respect to succeeding components. Number of branches per plant (28.62%), number of clusters per plant (23.55%) and seed yield (15.58%) showed maximum per cent contribution towards total genetic divergence on pooled basis. Cluster analysis showed that genotypes fall into seven different clusters and their inter and intra cluster distance showed genetic diversity between different genotypes. The maximum number of genotypes i.e., 8 was found in cluster II followed by cluster III comprising of 6 genotypes. Genotypes RMG-1138 and IPM-02-03 representing the mono genotypic cluster signifies that it can be the most diverse variety and it would be the appropriate genotype for hybridization with ones present in other clusters to tailor the agriculturally important traits and ultimately to boost the seed yield in mungbean under rainfed conditions.


Author(s):  
Mehdi Mohebodini ◽  
Naser Sabaghnia ◽  
Farhad Behtash ◽  
Mohsen Janmohammadi

Abstract Landraces of spinach in Iran have not been sufficiently characterised for their morpho-agronomic traits. Such characterisation would be helpful in the development of new genetically improved cultivars. In this study 54 spinach accessions collected from the major spinach growing areas of Iran were evaluated to determine their phenotypic diversity profile of spinach genotypes on the basis of 10 quantitative and 9 qualitative morpho-agronomic traits. High coefficients of variation were recorded in some quantitative traits (dry yield and leaf area) and all of the qualitative traits. Using principal component analysis, the first four principal components with eigen-values more than 1 contributed 87% of the variability among accessions for quantitative traits, whereas the first four principal components with eigen-values more than 0.8 contributed 79% of the variability among accessions for qualitative traits. The most important relations observed on the first two principal components were a strong positive association between leaf width and petiole length; between leaf length and leaf numbers in flowering; and among fresh yield, dry yield and petiole diameter; a near zero correlation between days to flowering with leaf width and petiole length. Prickly seeds, high percentage of female plants, smooth leaf texture, high numbers of leaves at flowering, greygreen leaves, erect petiole attitude and long petiole length are important characters for spinach breeding programmes.


Caryologia ◽  
2021 ◽  
Vol 74 (2) ◽  
pp. 149-161
Author(s):  
Jing Ma ◽  
Wenyan Fan ◽  
Shujun Jiang ◽  
Xiling Yang ◽  
Wenshuai Li ◽  
...  

Genetic diversity studies are essential to understand the conservation and management of plant resources in any environment. The genus Consolida (DC.) Gray (Ranuculaceae) belongs to tribe Delphinieae. It comprises approximately 52 species, including the members of the genus Aconitella Spach. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Consolida genetic diversity. Therefore, we collected and analyzed 19 species from 12 provinces of regions. Overall, one hundred and twenty-seven plant specimens were collected. We showed significant differences in quantitative morphological characters in plant species. Unweighted pair group method with arithmetic mean and principal component analysis (PCA) divided Consolida species into two groups. All primers produced polymorphic amplicons though the extent of polymorphism varied with each primer. The primer OPA-06 was found to be most powerful and efficient as it generated a total of 24 bands of which 24 were polymorphic. The Mantel test showed correlation (r = 0.34, p=0.0002) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Consolida species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Consolida species. Our aims were 1) to assess genetic diversity among Consolida species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa.


2015 ◽  
Vol 39 (3) ◽  
pp. 385-396
Author(s):  
MA Zaman ◽  
MNA Siddquie ◽  
M Mahbubur Rahman ◽  
MY Abida ◽  
MJ Islam

Thirty genotypes of wheat were grown in an Alpha Lattice Design with three replications for evaluation and divergence analysis. Seeds were sown on 24 November 2011 at Regional Wheat Research Centre, Bangladesh Agricultural Research Institute, Shyampur, Rajshahi. Significant variation was observed among the genotypes and these are grouped into six clusters. Clusters III and VI were comprised of maximum number of genotypes (6) followed by clusters I, IV, and V with 5 genotypes and the minimum genotypes (3) were in cluster II. The maximum inter-cluster distance was recorded between the Cluster VI and Cluster II followed by cluster III and Cluster II, which indicates that genotypes belonging to these distant clusters could be used in hybridization programme for getting a wide spectrum of variation among the segregates. The minimum intercluster distance was found between the Cluster IV and Cluster I followed by that of Cluster V and Cluster IV. The maximum intra-cluster distance was recorded in Cluster II, consisted of three genotypes of diverse origin followed by Cluster V consisting of five genotypes which indicated that the genotypes of these clusters might have considerable diversity among themselves. While the minimum distance was computed in Cluster I composed of five genotypes which indicated that these genotypes were genetically very close to each other. Considering the eigenvalues of all principal component analysis the PC1, PC2, PC3, PC4, and PC5 with values contributed 30.78%, 20.11%, 17.75%, 10.93%, and 7.63%, respectively, of the total variation. The results revealed from the present study that the first principal component had high positive component loading from grains/spike and high negative loading from grain yield. Considering the clusters mean value, the genotype of Cluster II and VI are most divergent and maximum heterosis and wide variability in genetic architecture may be expected from the crosses between the genotypes belonged to these clusters. More specifically the cluster II could be selected for dwarf in nature, early heading and maturity and bold grain size. The genotypes from the cluster IV could be selected for maximum spikes/m2 and maximum grain yield. The positive value of both vectors for days to heading and spikes/m2 indicated that these traits had the highest contribution towards divergence among the 30 drought tolerant wheat genotypes. DOI: http://dx.doi.org/10.3329/bjar.v39i3.21982 Bangladesh J. Agril. Res. 39(3): 385-396, September 2014


2021 ◽  
Vol 18 (2) ◽  
pp. 1-25
Author(s):  
Odunayo Joseph Olawuyi ◽  
David Franklin Igata ◽  
Akinlolu Olalekan Akanmu ◽  
Abeeb Abiodun Azeez

Ten genotypes of maize collected from National Center for Genetic Resources and Biotechnology (NACGRAB) were induced with X-ray for morphological and molecular assessment. The experimental design was complete randomized design with four replicates. Morphological and molecular statistical analyses of treated genotypes were conducted using SAS and Power Maker Packages, respectively while dendrogram was generated using Jaccards similarity coefficient using Unweighted Paired Group Method and Arithmetic Averages (UPGMA). The study revealed significant difference which is an indication of genetic variation of characters in treated maize. Genotype DTSR-Wco performed best in plant height (62.35 cm), leaf length (62.35 cm), number of leaves (3.15), leaf width (7.55 cm) and dry leaf biomass (0.24 g). X-ray at 90 Kv/mass, 95 Kv/mass and 100 Kv/mass decreased plant heights to 54.25cm, 53.87cm and 54.10cm respectively compared to Control. Heritability estimate was greater than 70% for all characters evaluated. Genotype TZM 1551 at 0 Kv/mass yielded the highest concentration of DNA at 2841.60 ng/ul and the highest genomic DNA concentration was obtained at 95 Kv/mass for TZM 132 with 1.91%. Primer BMC 1755 was most polymorphic with 58.77% in treated maize genotypes. The plant height was strongly correlated with leaf length (r=0.9), leaf width (r=0.76) and number of leaves (r=0.77). Principal component analysis showed close relationship between plant height (-0.03) and leaf length (0.05) compared with leaf width (-0.67) and number of leaves (0.69). Dry shoot biomass (0.05) was closely related to dry root biomass (-0.03) and dry leaf biomass (-0.04).


2009 ◽  
Vol 52 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Athanasios L. Tsivelikas ◽  
Olga Koutita ◽  
Anastasia Anastasiadou ◽  
George N. Skaracis ◽  
Ekaterini Traka-Mavrona ◽  
...  

In this work, the part of the squash core collection, maintained in the Greek Gene Bank, was assessed using the morphological and molecular data. Sixteen incompletely classified accessions of the squash were characterized along with an evaluation of their resistance against two isolates of Fusarium oxysporum. A molecular analysis using Random Amplified Polymorphic DNA (RAPD) markers was also performed, revealing high level of polymorphism. To study the genetic diversity among the squash accessions, a clustering procedure using Unweighed Pair Group Method and Arithmetic Average (UPGMA) algorithm was also adopted. Two independent dendrograms, one for the morphophysiological and one for molecular data were obtained, classifying the accessions into two and three main clusters, respectively. Despite the different number of the clusters there were many similarities between these two dendrograms, and a third dendrogram resulting from their combination was also produced, based on Gower's distance and UPGMA clustering algorithm. In order to determine the optimal number of clusters, the upper tail approach was applied. The more reliable clustering of the accessions was accomplished using RAPD markers as well as the combination of the two different data sets, classifying the accessions into three significantly different groups. These groups corresponded to the three different cultivated species of C. maxima Duch., C. moschata Duch., and C. pepo L. The same results were also obtained using Principal Component Analysis.


Author(s):  
Chioma Adelieje ◽  
Edak Aniedi Uyoh ◽  
Valentine Otang Ntui ◽  
Daniel Ama-Abasi

Morphometric and genetic diversity studies were carried out on Chrysichthys nigrodigitatus sampled from middle and lower Cross River. The aim was to provide information on variations between these two populations and also augment the limited information currently available on genetic diversity in this species. A total of 79 fish samples were used for the morphometric analysis out of which 30 were used for the genetic study. Genomic DNA was extracted from caudal fin using a modified cetyltrimethylammonium bromide method and amplified using microsatellite markers.Twenty-three morphological features were studied from each fish sample out of which 19 showed significant differences (P<0.05) between the two populations. Principal Component Analysis identified head length, head width, caudal peduncle depth, standard length, preventral distance, snout length and anal fin length as key contributors to variation. Genetic analyses indicated low variability in the populations studied as evidenced by low Shannon`s information index (mean of 0.944 – 1.034), and positive coefficients of inbreeding (FIS) across both populations suggesting the presence of greater homozygosity in this species. Gene flow of 3.507 was observed between the lower and middle Cross River indicating the possibility of free mating between the two populations. The low levels of genetic diversity call for urgent management and conservation strategies to ensure long term survival of the species.


Sign in / Sign up

Export Citation Format

Share Document