scholarly journals Mesenchymal stem cells modulate the gene expression of T- type Calcium Channel Subunit Alpha 1G (Cav3.1) in acute phase of epilepsy

2021 ◽  
Author(s):  
Vitoria Pimentel da Silva ◽  
Laura Provenzi ◽  
Nicole Becker ◽  
Giovani Zocche ◽  
Gabriel Leal ◽  
...  

Introduction: Temporal Lobe Epilepsy (TLE) is a disorder caused by neuronal electrical imbalance, clinically manifested by spontaneous and recurrent seizures1,2. Its pathogenesis involves channelopathies of calcium channels, which contributes to hyperexcitability and hypersynchrony in TLE3 . About 30% of patients do not respond to drug treatment4 , making it necessary to develop new therapeutic alternatives, such as cell therapy. This work aimed to evaluate the modulation of mesenchymal stem cells (MSCs) in the calcium channel CACNA1G (Cav3.1) gene expression. Methods: MSCs were extracted from Wistar rats bone marrow and then cultured and transplanted intravenously and intranasally in the control and epileptic groups. The brain was collected 1 and 7 days after transplantation to analyze gene expression. Results: The analysis showed that treated animals had greater gene expression, compared to animals not treated in the epileptic and control group, in both days and administration routes. Furthermore, epileptic animals that were not treated had a low or negative expression of the gene. The epileptic rats that were treated, on the other hand, had a marked increase in gene expression e in the prefrontal cortex. Conclusion: This up-regulation noted on the treated groups raises the hypothesis that MSCs would be using these channels to modify the microenvironment5 , intensifying Cav.3.1 transcription and contributing to tissue regeneration by neurodifferentiation6,7. This is supported by the increase in the calcium influx present in the early stages of neuronal maturation8,9. Thus, MSCs can modulate gene expression in the pilocarpine-induced animal’s brain, making Cav3.1 a target to be explored in epilepsy.

2021 ◽  
Author(s):  
Gabriel Leal Carvalho ◽  
Isadora Ghilardi ◽  
Allan Alcará ◽  
Felipe Rodrigues ◽  
Ângela Zanatta ◽  
...  

Introduction: Temporal Lobe Epilepsy (TLE) is the most common refractory epilepsy, and it is characterized by abnormal firing of a population of neurons in the brain, and by cognitive deficit1 . This abnormal intrinsic phenomenon can cause deregulation of the T-type calcium channels, increasing neuronal excitability, leading to structural changes in the Central Nervous System2 . Mesenchymal Stem Cells (MSCs) are a therapeutic alternative for the TLE for they can modulate neurotransmitters liberation, reducing neuronal death and increasing neurogenesis3,4,5. The present study analyzed MSCs effects on gene expression of T-type calcium channel CACNA1H in the brain of pilocarpine-induced TLE animal models. Methods: The MSCs were obtained from the bone marrow of Wistar rats, cultured, and transplanted intravenously and intranasally. The animals were separated into the following groups: control and pilocarpine-induced status epilepticus, then they were euthanized 1- and 7-days post-transplant for gene expression analysis. Results: The results show that 1-day post-transplant there was no difference in the CACNA1H gene expression between the MSC-treated pilocarpine groups and the control and untreated pilocarpine groups. Subsequently 7-days posttransplant, the treated groups showed greater expression of the gene in both means of administration. Moreover, there was an increase in CACNA1H gene expression in the prefrontal cortex of the treated pilocarpine group, which makes us conjecture a mechanism of greater need for its transcription in this area. Conclusion: Thus, MSCs were able to modulate the expression of the CACNA1H gene in the brain, increasing its importance as a target for future studies on epilepsy therapies involving cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Man Amanat ◽  
Anahita Majmaa ◽  
Morteza Zarrabi ◽  
Masoumeh Nouri ◽  
Masood Ghahvechi Akbari ◽  
...  

Abstract Background This study assessed the safety and efficacy of intrathecal injection of umbilical cord tissue mesenchymal stem cells (UCT-MSC) in individuals with cerebral palsy (CP). The diffusion tensor imaging (DTI) was performed to evaluate the alterations in white-matter integrity. Methods Participants (4–14 years old) with spastic CP were assigned in 1:1 ratio to receive either UCT-MSC or sham procedure. Single-dose (2 × 107) cells were administered in the experimental group. Small needle pricks to the lower back were performed in the sham-control arm. All individuals were sedated to prevent awareness. The primary endpoints were the mean changes in gross motor function measure (GMFM)-66 from baseline to 12 months after procedures. The mean changes in the modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also assessed. Secondary endpoints were the mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR). Results There were 36 participants in each group. The mean GMFM-66 scores after 12 months of intervention were significantly higher in the UCT-MSC group compared to baseline (10.65; 95%CI 5.39, 15.91) and control (β 8.07; 95%CI 1.62, 14.52; Cohen’s d 0.92). The increase was also seen in total PEDI scores (vs baseline 8.53; 95%CI 4.98, 12.08; vs control: β 6.87; 95%CI 1.52, 12.21; Cohen’s d 0.70). The mean change in MAS scores after 12 months of cell injection reduced compared to baseline (−1.0; 95%CI −1.31, −0.69) and control (β −0.72; 95%CI −1.18, −0.26; Cohen’s d 0.76). Regarding CP-QoL, mean changes in domains including friends and family, participation in activities, and communication were higher than the control group with a large effect size. The DTI analysis in the experimental group showed that mean FA increased (CST 0.032; 95%CI 0.02, 0.03. PTR 0.024; 95%CI 0.020, 0.028) and MD decreased (CST −0.035 × 10-3; 95%CI −0.04 × 10-3, −0.02 × 10-3. PTR −0.045 × 10-3; 95%CI −0.05 × 10-3, −0.03 × 10-3); compared to baseline. The mean changes were significantly higher than the control group. Conclusions The UCT-MSC transplantation was safe and may improve the clinical and imaging outcomes. Trial registration The study was registered with ClinicalTrials.gov (NCT03795974).


2021 ◽  
Vol 11 (7) ◽  
pp. 1327-1332
Author(s):  
Long Zhou ◽  
Kui Wang ◽  
Meixia Liu ◽  
Wen Wei ◽  
Liu Liu ◽  
...  

NF-κB activation and its abnormal expression are involved in the progression of glioma. miRNA plays a crucial role in bone diseases. The role of NF-κB is becoming more and more important. The purpose of this study is to explore the mechanism by how miR-1 regulates NF-κB signaling. C57 glioma mouse models were divided into osteoporosis (OP) group and control group. qPCR was used to measure miR-1 levels in OP and control mice. Bone marrow mesenchymal stem cells (BMSCs) were cultured and transfected with miR-1 specific siRNA to establish miR-1 knockout cell model followed by analysis of cell apoptosis, expression of NF-κB signaling molecules by western blot. qPCR results showed that miR-1 levels in OP mice were significantly reduced compared to control mice. A large number of siRNA particles were observed in transfected BMSCs under a fluorescence microscope. qPCR results showed that siRNA transfection significantly suppressed miR-1, indicating successful transfection. Flow cytometry revealed significant differences in cell apoptosis between miR-1 siRNA group and the NC group. Western blot indicated miR-1 promoted BMSCs differentiation via NF-κB mediated up-regulation of ALP activity. The expression of miR-1 is low in BMSCs of mice with glioma. In addition, BMSCs differentiation is enhanced by NF-κB activation via up-regulating miR-1.


2019 ◽  
Vol 7 (8) ◽  
pp. 1252-1258 ◽  
Author(s):  
Vivi Sofia ◽  
Moch Saiful Bachri ◽  
Rizki Rahmadian

BACKGROUND: Pharmacological therapy in the management of OA causes many new health problems due to side effects caused by long-term use of drugs, such as long-term use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) will cause gastric ulcers and impaired kidney function. In OA pathogenesis, PGE2 gene is involved in the inflammation process. AIM: This study aims to identify the influence of Wharton Jelly Mesenchymal Stem Cell (MSC-WJ) on PGE2 expression gene in synoviocyte by in vitro. MATERIAL AND METHODS: The method used in this study is the co-culture method of primary cells and stem cells in the appropriate media. This research is pure experimental research. The sample used came from synovial tissue of osteoarthritis patients who underwent Total Knee Replacement (TKR) surgery. This study was divided into 6 groups treated with 4 replications. The expression analysis of the Prostaglandin E2 gene was done using qPCR (Real-Time Polymerase Chain Reaction). The expression analysis of the Prostaglandin E2 gene was carried out before and after the co-culture with Wharton's Jelly and continued with the analysis of statistical data processing using the SPSS.15 program. PGE2 gene expression data were processed using the Kruskal-Wallis test and continued with the Mann-Whitney test with a 95% confidence level. RESULTS: The results showed that Mesenchymal Stem Cells Wharton Jelly could reduce the expression of Prostaglandin E2 gene after co-culture for 24 hours and 48 hours in synoviocyte cells osteoarthritis significantly compared with the control group. The administration of Mesenchymal Stem Cells for 24 hours reduced the expression level of PGE2 gene by 0.61 times compared to the control group (p < 0.05) and the administration of Mesenchymal Stem Cells for 48 hours decreased the expression level of PGE2 gene by 0, 47 times compared to the control group (p < 0.05). CONCLUSION: This study concluded that MSC-WJ in OA synoviocyte significantly reduced the expression of the PGE2 gene (p < 0.05).


2018 ◽  
Vol 27 (8) ◽  
pp. 1203-1209
Author(s):  
Bok-Nam Park ◽  
Tae Sung Lim ◽  
Joon-Kee Yoon ◽  
Young-Sil An

Purpose: The purpose of this study was to investigate how intravenously injected bone marrow-derived mesenchymal stem cells (BMSCs) are distributed in the body of an Alzheimer’s disease (AD) animal model. Methods: Stem cells were collected from bone marrow of mice and labeled with Indium-111 (111In). The 111In-labeled BMSCs were infused intravenously into 3×Tg-AD mice in the AD group and non-transgenic mice (B6129SF2/J) as controls. Biodistribution was evaluated with a gamma counter and gamma camera 24 and 48 h after injecting the stem cells. Results: A gamma count of the brain showed a higher distribution of labeled cells in the AD model than in the control group at 24 (p = .0004) and 48 h (p = .0016) after injection of the BMSCs. Similar results were observed by gamma camera imaging (i.e., brain uptake in the AD model was significantly higher than that in the control group). Among the other organs, uptake by the spleen was the highest in both groups. More BMSCs were found in the lungs of the control group than in those of the AD group. Conclusions: These results suggest that more intravenously infused BMSCs reached the brain in the AD model than in the control group, but the numbers of stem cells reaching the brain was very small.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zun Chang Liu ◽  
Thomas Ming Swi Chang

Mesenchymal stem cells (MSCs) derived from bone marrow can secrete cytokines and growth factors and can transdifferentiate into liver cells. We transplanted polymeric membrane bioencapsulated MSCs into the spleens of 90% partial hepatectomized rats. This resulted in 91.6% recovery rates. This is compared to a recovery rate of 21.4% in the 90% hepatectomized rats and 25% in the 90% hepatectomized rats receiving intrasplenic transplantation of free MSCs. After 14 days, the remnant livers in the bioencapsulated MSCs group are not significantly different in weight when compared to the sham control group. From day 1 to day 3 after surgery, in the bioencapsulated MSCs group, the plasma HGF and IL-6 were significantly higher than those in the free MSCs group and control group (P<0.01); plasma TNF-αwas significantly lower (P<0.001). We concluded that the intrasplenic transplantation of bioencapsulated MSCs significantly increases the recovery rates of 90% hepatectomized rats. It is likely that the initial effect is from proliver regeneration factors followed later by the transdifferentiated hepatocyte-like cells. However, histopathological analysis and hepatocyte proliferation study will be needed to better understand the regenerative mechanisms of this result. This study has implications in improving the survival and recovery of patients with very severe liver failure due to hepatitis, trauma, or extensive surgical resection.


2020 ◽  
Author(s):  
Shujun Lin ◽  
Wenshan Lin ◽  
Chunling Liao ◽  
Tianbiao Zhou

Abstract Background: Renal damage caused by drug toxicity is becoming more and more common in clinic. How to avoid and treat kidney damage caused by drug toxicity is essential to maintain patient health and reduce social economic burden. In this study, we performed a meta-analysis to assess the nephroprotective effect of mesenchymal stem cells (MSCs) in therapy of kidney disease induced by toxicant. Methods: Cochrane Library, Embase, ISI Web of Science and PubMed databases were searched up to Dec 31, 2019 to identify the studies and extract the data to assess the efficacy of MSCs for kidney disease induced by toxicant using Cochrane Review Manager Version 5.3. 27 studies were eligible and recruited for this meta-analysis. Results: The results showed that the difference of Scr between MSCs treatment group and control group was notable for 2 days, 4 days, 5 days, 6-8 days, 10-15 days, ≥42 days (2 days: WMD =-0.88, 95%CI: -1.34, -0.42, P=0.0002; 4 days: WMD=-0.69, 95%CI: -0.99, -0.39, P<0.00001; 5 days: WMD=-0.46, 95%CI: -0.67, -0.25, P<0.0001; 6-8 days: WMD=-0.51, 95%CI: -0.79, -0.22, P=0.0005; 10-15 days: WMD =-0.38, 95%CI: -0.56, -0.20, P<0.0001; ≥42 days: WMD =-0.22, 95%CI: -0.39, -0.06, P=0.007). Furthermore, the difference of BUN between MSCs treatment group and control group was notable for 2-3 days, 4-5 days, 6-8 days, ≥28 days. The results also indicated that MSCs treatment can alleviate the inflammatory cells, necrotic tubule, regenerative tubules, renal interstitial fibrosis in kidney disease induced by toxicant. Conclusion: MSCs might be a promising therapeutic agent for kidney disease induced by toxicant.


2020 ◽  
Vol 32 (2) ◽  
pp. 238
Author(s):  
R. Singh ◽  
S. Saini ◽  
S. Ansari ◽  
S. Jamwal ◽  
D. Malakar

The present study was carried out to isolate mesenchymal stem cells (MSCs) from adipose tissue of cattle (Bos indicus), characterise them, and apply them for the treatment of mastitis and metritis in the cow. Cattle MSCs were isolated from adipose tissue near the loin region of cow. Isolated adipose tissue was subjected to enzymatic digestion using 2% collagenase with agitation at regular intervals. The cells obtained after digestion were resuspended in cell culture flasks containing growth enriched medium and cultured under standard culture conditions. Alkaline phosphatase staining was used as one of the parameters to confirm cultured putative MSCs. Bovine Ad-MSCs were further characterised using real time-PCR by amplification of MSC-specific markers: CD73, CD90, and CD105 as positive markers and CD34, CD45, and CD79a as negative markers. Immunocytochemistry showed the presence of CD73, CD90, and CD105 on the cell surface. Three groups-control (C), local (L), and intravenous (IV)-with 6 cows suffering from mastitis were taken in each group and subjected to MSC transplantation through local and intravenous routes. Control group animals were subjected to antibiotic treatment only. Similarly, another three groups were taken with 6 cows in each group suffering from metritis. Post-transplantation wound healing, tissue repair, and reduction in inflammation were monitored for 26 days, at different time intervals; that is, after Days 1, 3, 7, and 15. Blood samples were also collected from animals at the same time intervals for real time-PCR. A similar examination was also done in metritis groups along with the analysis of the reduction in turbidity of cervical fluid at the abovementioned time intervals. Real time-PCR was performed to determine relative expression of genes for proliferative factors, anti-inflammatory cytokines, and antimicrobial peptides on cells isolated from blood collected at different time intervals. Gene expression in the local group of mastitis subjected to MSC injection was significantly higher than that of the IV and control group. The somatic cell count declined in both local and IV groups compared with the control group. Whereas the expression of the same genes in the IV group of metritis was significantly higher than that of the local and control groups of cows. The turbidity of cervical fluid and mucus was reduced in the IV group compared with the local group. In conclusion, we demonstrated the healing potential of MSCs in a cow model via MSC injection. Promising results were obtained in curing mastitis in both local and IV groups, whereas healing in the case of metritis was significantly higher in the IV group compared with both the control and local groups of cows. The study indicates the potential use of MSc for treatment of mastitis and metritis in cattle through wound healing and decreasing microbial infection.


2018 ◽  
Vol 5 (4) ◽  
pp. 31 ◽  
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Roohollah Mirzaee Khalilabadi

Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro. 


2020 ◽  
Vol 10 (1) ◽  
pp. 138
Author(s):  
Khaled Sharifi ◽  
Maryam Ayatollahi ◽  
Ramin Yaghoubi ◽  
Mohmmad Hossain Sanati ◽  
Afsune Afshari ◽  
...  

Matrix metalloproteinase 9 (MMP9) as the enzyme of adult stem cells secreted from damage cells. In spite of low level of MMP9 enzyme in the mesenchymal stem cells, many inflammatory cytokines stimulation such as TNF-&alpha; could increase MMP9 level in cells. Current study evaluated the expression of the MMP9 enzyme under the influence of TNF-&alpha; in human bone marrow mesenchymal stem cells. The human bone marrow mesenchymal stem cells were classified into control and experimental groups. In the experimental groups, various concentrations of the TNF-&alpha; (1ng/ml and 10ng/ml) were administrated in different times (10 and 24 hours), whereas the control group was not treated with TNF-&alpha;. MMP9 gene expression was evaluated by Real-Time PCR. TNF-&alpha; administration in 1ng/ml and 10ng/ml dosage for 10 hours, induced the expression of MMP9 1468.3 and 1782.8 times more than the control group, respectively. After 24h, in comparison between 1ng/ml and 10ng/ml with control groups, MMP9 expression were 442.64 and 1184.4 times more than control group, respectively. In conclusion, the expression rate of the MMP9 gene in bone marrow mesenchymal stem cells might be effected by dosage and time of exposure to TNF-&alpha;. Furthermore, the time of exposure might have the prominent role in alteration of MMP9 gene expression induction in the mesenchymal stem cells.


Sign in / Sign up

Export Citation Format

Share Document