scholarly journals Oxidative Stress, Atherosclerosis and Dietary Recommendations

2022 ◽  
Vol 8 (1) ◽  
pp. 101-108
Author(s):  
Ayşe Betül DEMİRBAŞ ◽  
Burcu YEŞİLKAYA
Diseases ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Paloma Fernández-Sanz ◽  
Daniel Ruiz-Gabarre ◽  
Vega García-Escudero

As life expectancy is growing, neurodegenerative disorders, such as Alzheimer’s disease, are increasing. This disease is characterised by the accumulation of intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein, senile plaques composed of an extracellular deposit of β-amyloid peptide (Aβ), and neuronal loss. This is accompanied by deficient mitochondrial function, increased oxidative stress, altered inflammatory response, and autophagy process impairment. The present study gathers scientific evidence that demonstrates that specific nutrients exert a direct effect on both Aβ production and Tau processing and their elimination by autophagy activation. Likewise, certain nutrients can modulate the inflammatory response and the oxidative stress related to the disease. However, the extent to which these effects come with beneficial clinical outcomes remains unclear. Even so, several studies have shown the benefits of the Mediterranean diet on Alzheimer’s disease, due to its richness in many of these compounds, to which can be attributed their neuroprotective properties due to the pleiotropic effect they show on the aforementioned processes. These indications highlight the potential role of adequate dietary recommendations for clinical management of both Alzheimer’s diagnosed patients and those in risk of developing it, emphasising once again the importance of diet on health.


2018 ◽  
Vol 39 (06) ◽  
pp. 413-418 ◽  
Author(s):  
Guanghui Liu ◽  
Jiasheng Zhao ◽  
Yang Cao

AbstractPhysical exercise increase is confirmed as a fundamental treatment for hypercholesterolemia patients, but the effect on the arterial stiffness and oxidative stress is still unclear. 74 hypercholesterolemia patients were divided into 2 groups. The exercise group received dietary recommendations and a 3-month exercise program, prescribed according to their first cardiopulmonary exercise tests(CPET), while the control group only received dietary recommendations. All patients underwent blood tests, CPET and brachial-ankle pulse wave velocity (baPWV) studies at enrollment and at 3 months’ follow-up. At the end of 3 months, there was no change in total cholesterol (TC) level in either group. However, in the exercise group, we found maximal exercise parameters increased and baPWV values declined. Meanwhile, there were significant changes in the level of malondialdehyde, 8-isoprostane-F2α and superoxide dismutase. Moreover, the change of baPWV was positively correlated with the change of 8-isoprostane-F2α (r=0.36, P<0.01). In the control group, no change in baPWV or oxidative biomarker was observed. Our findings suggested that regular aerobic exercise could lessen arterial stiffness in hypercholesterolemia patients, even in the context of no obvious TC decrease. During this process, favorable adjustment in oxidative stress might be an important pathway, which remains to be further explored.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ilaria Peluso ◽  
Maura Palmery

It has been suggested that some fruit-based drinks (FBD) may delay the onset of postprandial stress, which is involved in the pathogenesis of many diseases. The majority of the studies, which have investigated the effects of FBD on postprandial stress, involved a placebo that was a drink with the same content in sugars or carbohydrates of the FBD, but without the bioactive antioxidant compounds. These studies were aimed more at evaluating the effect of the antioxidants rather than the effect of the FBD as a whole. Only 4 studies compared the effect of FBD with water as control and did not support the hypothesis that FBD could inhibit postprandial dysmetabolism, as well as the studies that compared the effect of orange juice and cola. Overall, the results suggest a complex relationship between postprandial dysmetabolism, inflammation, and oxidative stress. Furthermore, the inflammatory and oxidative stress markers need further analytical validation and normal ranges should be established in order to reach a firm conclusion. Finally, caution should be taken in the interpretation of the effect of FBD in postprandial studies and the reviewed results suggest that dietary recommendations should aim to limit rather than increase sugar-sweetened beverages consumption.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1919 ◽  
Author(s):  
Sebastià Galmés ◽  
Francisca Serra ◽  
Andreu Palou

Vitamin E (VE) has a recognized leading role as a contributor to the protection of cell constituents from oxidative damage. However, evidence suggests that the health benefits of VE go far beyond that of an antioxidant acting in lipophilic environments. In humans, VE is channeled toward pathways dealing with lipoproteins and cholesterol, underlining its relevance in lipid handling and metabolism. In this context, both VE intake and status may be relevant in physiopathological conditions associated with disturbances in lipid metabolism or concomitant with oxidative stress, such as obesity. However, dietary reference values for VE in obese populations have not yet been defined, and VE supplementation trials show contradictory results. Therefore, a better understanding of the role of genetic variants in genes involved in VE metabolism may be crucial to exert dietary recommendations with a higher degree of precision. In particular, genetic variability should be taken into account in targets concerning VE bioavailability per se or concomitant with impaired lipoprotein transport. Genetic variants associated with impaired VE liver balance, and the handling/resolution of oxidative stress might also be relevant, but the core information that exists at present is insufficient to deliver precise recommendations.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3239
Author(s):  
Diego Gazzolo ◽  
Simonetta Picone ◽  
Alberto Gaiero ◽  
Massimo Bellettato ◽  
Gerardo Montrone ◽  
...  

Lutein is a dietary carotenoid preferentially accumulated in the eye and the brain in early life and throughout the life span. Lutein accumulation in areas of high metabolism and oxidative stress such as the eye and the brain suggest a unique role of this ingredient during the development and maturation of these organs of common embryological origin. Lutein is naturally provided to the developing baby via the cord blood, breast milk and then infant diet. The presence of this carotenoid depends on fruit and vegetable intakes and its bioavailability is higher in breastmilk. This paper aims to review the anatomical development of the eye and the brain, explore the presence and selective deposition of lutein in these organs during pregnancy and infancy and, based on its functional characteristics, present the latest available research on the beneficial role of lutein in the pediatric population. The potential effects of lutein in ameliorating conditions associated with increase oxidative stress such as in prematurity will be also addressed. Since consumption of lutein rich foods falls short of government guidelines and in most region of the world infant formulas lack this bioactive, dietary recommendations for pregnant and breastfeeding women and their child can help to bridge the gap.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A217-A217
Author(s):  
C SPADA ◽  
S SANTINI ◽  
F FOSCHIA ◽  
M PANDOLFI ◽  
V PERRI ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A116-A116
Author(s):  
S ALEYNIK ◽  
M ALEYNIK ◽  
C LIEBER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document