scholarly journals COMPARATIVE CFD BASED PARAMETRIC ANALYSIS OF GAS FLOW IN TWO CONTER-FLOW WET SCRUBBER SYSTEMS

2021 ◽  
Vol 1 (2021) ◽  
pp. 28-32
Author(s):  
Daniela-Elena Jugănaru ◽  
Mariana Panaitescu ◽  
Liviu-Constantin Stan

" In this study, gas flow field were simulated using ANSYS 2020R2, Fluid Flow Fluent computational fluids dynamic (CFD) software based on the continuity, velocity, temperature, energy and k -  turbulence. The overall objective of the study is to compare the pressure and velocity maps inside the wet scrubber system for two different scrubber designs. I have choose to analyse an In-Line scrubber bottom inlet, type I, and In-Line scrubber side inlet, type L. Bottom entry or side entry designs to allow a direct up-flow configuration and simplify engine exhaust gas duct routing for any type of vessel. The flow in a wet scrubber is very complex due to the interaction between dust particles, water droplets, and bulk water and flue gas. The flue gas flow is turbulent and there are multiple phases (gas, liquid and solid). CFD codes that predict gas flow patterns are based on conservation equations for mass, momentum and energy. The results show that the residuals have a very good job of converging at minimum flow contours and vectors at the inlet across the scrubbing chamber and outlet shows a distributed flow. The velocity profiles have fully conformed to the recommended profile for turbulent flow in pipes. As can be seen in the figures above, the velocity flow contour inside the scrubber is higher in the scrubber side inlet. Even though I choose to study the simplified scrubber model without taking into account that spray nozzle improve mixing between the scrubbing liquid and waste gas; from the results obtained, it can be deduced that the numerical simulation using CFD is an effective method to study the flow characteristics of a counter-flow wet scrubber system. "

2021 ◽  
Vol 13 (3) ◽  
pp. 72-78
Author(s):  
Daniela-Elena Jugănaru ◽  
◽  
Ionuț Voicu ◽  
Mariana Panaitescu ◽  
Viorel Panaitescu ◽  
...  

In this study, gas flow fields were simulated using ANSYS 2020R2, Fluid Flow Fluent computational fluids dynamic (CFD) software based on the continuity, velocity, temperature, energy and k - e turbulence. The overall objective of the study is to compare the velocity maps inside the wet scrubber system for three different In-Line scrubber bottom inlet designs. Also, the behavior of the temperature of the mixture inside the scrubber is studied according to the number of nozzles provided by each system from those proposed for study. The numerical simulation using CFD is an effective method to study the flow characteristics of a counter-flow wet scrubber system and the most efficient wet scrubber model is the one with several. The results show that the residuals have a very good job of converging at minimum flow contours and vectors at the inlet across the scrubbing chamber and outlet shows a distributed flow. The speed of water droplets sprayed by the nozzles during mixing with waste gas in the scrubber chamber is double at model with 52 nozzles compared to the first model, equipped with only 13 nozzles. The velocity of clean gases discharged to the ship’s hull shows increases of over 100% of the values, with the increase of the number of nozzles. Spray nozzles improve mixing between the scrubbing liquid and waste gas, by injecting liquid through nozzles to create a fine droplet spray pattern. In this study it can be seen how the number of nozzles influences the quality of the mixture between the scrubbing liquid and waste gas.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2170
Author(s):  
Dagnija Blumberga ◽  
Vivita Priedniece ◽  
Rūdolfs Rumba ◽  
Vladimirs Kirsanovs ◽  
Agris Ņikitenko ◽  
...  

Optimal performance parameters must be found in order to organize efficient heat and mass transfer and effective flue gas cooling using a wet scrubber. Mathematical models are widely used for system optimization. However, a significant number of the available models have application limitations. This study presents a universal model for heat and mass transfer simulation in a scrubber called a fog unit, which has been developed and validated. Validation was performed by comparing the experimental and calculated results. Good agreement was achieved among the data, with differences between results not exceeding 10%. The model facilitates an investigation of the effects of gas flow, droplet size, and sprayed water on heat recovery from flue gas. An experimental matrix for fog unit capacity which included five main variables was designed and analyzed. The boundaries of the parameters are set considering the results of the experiments. The optimization method used is the path of the steepest ascent. The obtained results show the parameter change steps to achieve higher capacity of the condenser. In the studied unit, the maximum condenser capacity is limited by a flue gas flow value of 0.01 Nm3/s. The condenser optimization study that was conducted is viewed as a basis for further studies.


2018 ◽  
Vol 8 (02) ◽  
pp. 95 ◽  
Author(s):  
Isni Nur Khairunnissa ◽  
Prima Besty Asthary ◽  
Saepulloh Saepulloh ◽  
Rahmaniar Mulyani

Proses flue gas desulohurization (FGD) dengan wet scrubber adalah suatu proses untuk menurunkan konsentrasi SOx gas buang hasil pembakaran. Proses inidapat mengatasi polusi udara dengan cara menurunkan emisi gas dan partikel debu sehingga menghasilkan gas buangan yang lebih bersih. Air limbah wet scrubber bersifat asam. Salah satu alternatif pemanfaatan air limbah wet scrubber adalah untuk budidaya mikroalga. Spirulina platensis merupakan mikroalga yang berwarna hijau kebiruan yang mempunyai nilai gizi tinggi. Penelitian ini bertujuan untuk mengetahui potensi air limbah wet scrubber sebagai medium pertumbuhan S. platensis dan untuk mengetahui konsentrasi air limbah yang optimum bagi pertumbuhan S. platensis. Metode yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan 5 perlakuan dan 5 ulangan. Air limbah wet srubber dengan konsentrasi 0%, 25%, 50%, 75%, dan 100% digunakan sebagai medium pertumbuhan S. platensis. Selama kultivasi, dilakukan pengamatan pH, produksi biomassa, dan kandungan fikosianin. Hasil menunjukkan bahwa air limbah wet scrubber dapat dimanfaatkan sebagai medium pertumbuhan S. platensis. Konsentrasi optimum bagi pertumbuhan S. platensis adalah campuran dari 75% air limbah  wet scrubber dan 25% medium Zarrouk.Kata kunci : air limbah, flue gas desulphurization, wet scrubber, Spirulina platensis Utilization of Wet Scrubber Wastewater from Flue Gas Desuphurization (FGD) of Paper Industry as a Growth Medium for Spirulina platensisAbstractThe flue gas desulohurization (FGD) withwet scrubber is a process to reduce the concentration of SOx of the flue gas from combustion. This process can resolve the air pollution by reducing gas emission and the dust particles in the liquid droplets to produce cleaner flue gas. The wet scrubber wastewater is acidic. An alternative utilization of wet scrubber wastewater is for cultivation of microalgae. Spirulina platensis is bluish-green microalgae containing high nutritional value. The objective of this research is to determine the potential and the optimum concentration of wastewater from wet scrubber as growth medium of Spirulina. platensis. The research method was observation in the laboratory with a completely randomized design (CRD) with 5 treatments and 5 repetitions. The wastewater from wet scrubber with a concentration of 0 %, 25 %, 50 %, 75 %, and 100 % was used as growth medium of S. platensis. During cultivation, pH, biomass production, and pigment phycocyanin were measured. The results indicated that the wastewater of wet scrubber can be utilized as a growth medium of S. platensis. The optimum concentration for the growth of S. platensis is the mixture of 75% of the wastewater from wet scrubber and 25% of medium Zarrouk.Keywords : wastewater, flue gas desulphurization, wet scrubber, Spirulina platensis


Author(s):  
V.A. Raschepkin ◽  
I.A. Volchyn

The question of influence of the electric wind on efficiency of dispersed particles removal from a flue gas stream in electrostatic filters has not been studied well enough. Estimates are given of the role and influence of electric wind on the particle trapping processes in industrial electrostatic precipitators, as well as the results of experiments and calculations using aplied computational fluid dynamics packages. The results of mathematical modeling of the speed of dust particles of different diameters under the action of electric wind in the inter-electrode space of a corona discharge are presented; and the effects of turbulence of a gas flow on the particles capturing, the influence of the near-wall jet and the probabilistic nature of the removal of solid particles from the dusted exhaust gas flow are evaluated. Ref. 18, Fig. 5.


Author(s):  
Guangwu Tang ◽  
Bin Wu ◽  
Chenn Q. Zhou

Carbon monoxide (CO) boilers play an important role in the petroleum refining industry, completing the combustion of CO in the flue gas generated by the regeneration of fluidized cracking catalyst. The heat released by the CO combustion is used to generate steam for use in the refinery. The flue gas flow path can have a significant effect on the thermal efficiency and operation safety of the boiler. In this paper, a CO boiler which had been experiencing low thermal efficiency and high operation risks was studied. A three-dimensional (3D) computational fluid dynamics (CFD) model was developed with detailed description on the combustion process, flow characteristics and heat transfer. The results obtained from the model have good agreement with the plant measurement data. The heat transfer between the tubes and the combustion flue gas was optimized by adding a checker wall.


1998 ◽  
Vol 520 ◽  
Author(s):  
O.L. Khasanov ◽  
Yu.P Pokholkov ◽  
V.P. Krivobokov ◽  
T.V. Milovanova

ABSTRACTThe conditions of nanodispersed particles precipitation from a gas flow on the surface cooled to cryogenic temperatures are analyzed. The range of allowable values of precipitation surface temperature has been defined in dependence of dispersed flow characteristics. The method can be used both for catching of nanopowders, and for gas cleaning from aerosol and dust particles for ecological purposes.


2021 ◽  
Vol 88 ◽  
pp. 103826
Author(s):  
Yiyu Lu ◽  
Jiankun Zhou ◽  
Honglian Li ◽  
Jiren Tang ◽  
Lei Zhou ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3860
Author(s):  
Mária Hagarová ◽  
Milan Vaško ◽  
Miroslav Pástor ◽  
Gabriela Baranová ◽  
Miloš Matvija

Corrosion of boiler tubes remains an operational and economic limitation in municipal waste power plants. The understanding of the nature, mechanism, and related factors can help reduce the degradation process caused by corrosion. The chlorine content in the fuel has a significant effect on the production of gaseous components (e.g., HCl) and condensed phases on the chloride base. This study aimed to analyze the effects of flue gases on the outer surface and saturated steam on the inner surface of the evaporator tube. The influence of gaseous chlorides and sulfates or their deposits on the course and intensity of corrosion was observed. The salt melts reacted with the steel surface facing the flue gas flow and increased the thickness of the oxide layer up to a maximum of 30 mm. On the surface not facing the flue gas flow, they disrupted the corrosive layer, reduced its adhesion, and exposed the metal surface. Beneath the massive deposits, a local overheating of the inner surface of the evaporator tubes occurred, which resulted in the release of the protective magnetite layer from the surface. Ash deposits reduce the boiler’s thermal efficiency because they act as a thermal resistor for heat transfer between the flue gases and the working medium in the pipes. The effect of insufficient feedwater treatment was evinced in the presence of mineral salts in the corrosion layer on the inner surface of the tube.


Sign in / Sign up

Export Citation Format

Share Document