BIOLOGICAL SYNTHESIS OF SILVER NANOPARTICLES USING VICIA FABA EXTRACT AND ASSESSING ITS ANTIBACTERIAL ACTIVITY

INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (06) ◽  
pp. 21-25
Author(s):  
Pavani Chowdary ◽  
Rajeswaree Bhaskara ◽  
P Vishnu ◽  
Tejaswini Reddy Patlolla ◽  
Rachana Malyala ◽  
...  

The biological method provides a simple and efficient route for the synthesis of silver nanoparticles (AgNPs). The present study was aimed to synthesize AgNPs using Viciafaba seed extract as a reducing agent, which is a cost-effective, safe and eco-friendly method. The advantage of selecting this plant is that the phenolic and flavonoid compounds present in these seeds exhibit reducing property. Synthesized nanoparticles were characterized by using UV-Visible spectroscopy, Fe-SeM and X-ray diffractometer (XRD). Fe-SeM images showed that the particles were in the range of 12-22nm and flower structured. The formation and stability of AgNPs were confirmed by UV–vis spectrophotometer analysis, which showed higher absorbance at 430nm. XRD studies revealed a high degree of the crystalline structure of nanoparticles and a face-centered cubic structure. The anti-bacterial potency was tested against Escherichiacoli and Clostridium perfringens. These silver nanoparticles synthesized byV.faba seed extract exhibited the highest antibacterial effect against E.coli than C. perfringens.

2020 ◽  
Vol 9 (1) ◽  
pp. 503-514 ◽  
Author(s):  
Khaleeq Uz-Zaman ◽  
Jehan Bakht ◽  
Bates Kudaibergenova Malikovna ◽  
Eman R. Elsharkawy ◽  
Anees Ahmed Khalil ◽  
...  

AbstractSynthesis of nanoparticles is a fast-growing area of interest in the current development in science and technology. Nanoparticles are also used in biomedical applications. Green synthesis of nanoparticles is an environmental friendly and cost-effective technique. Trillium govanianum Wall. Ex. Royle crude extract was used for the eco-friendly genesis of silver nanoparticles (AgNPs). Aromatic amines were the functional groups involved in the bio-fabrication and synthesis of the AgNPs. The production of AgNPs was established by the appearance of brown color. The manufactured AgNPs were characterized by UV-Vis spectrophotometer, X-ray diffractometer, and FTIR spectrophotometer. AgNPs were face-centered cubic in nature with an average size of 9.99 nm. The produced AgNPs (18 µL disc−1) showed substantial antibacterial (53.74, 52.75, 51.61, 43.00, 36.84, and 36.84%) and antifungal (54.05, 42.11, 41.10, 40.85, 30.55, and 29.73%) potential against the tested bacterial (X. campestris, P. aeruginosa, S. aureus, E. coli, B. subtilis, and K. pneumoniae) and fungal (A. alternaria, Paecilomyces, C. albicans, Curvularia, A. niger, and Rhizopus) strains, respectively.


2021 ◽  
Vol 19 (2) ◽  
pp. 25-32
Author(s):  
Deegendra Khadka ◽  
Rachana Regmi ◽  
Mitesh Shrestha ◽  
Megha Raj Banjara

The application of silver nanoparticles in various sectors including health related field is remarkably profound. Nowadays, the research of synthesizing metal nanoparticles (MNPs) using plant extracts is fascinating field as it offers the eco-friendly and cost-effective method for nanoparticle synthesis. In this study, we synthesized silver nanoparticles (AgNPs) using methanolic extract of B.asiatica and C. fistula regarding their ethnomedical importance. The synthesized AgNPs were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). UV-vis spectroscopy exhibited the characteristic Surface Plasmon Peak of silver nanoparticle~420 nm.FTIR data were measured to get a preliminary idea on the functional groups responsible for the stabilization of AgNPs. XRD data confirmed the natural crystal structure with a face centered cubic of AgNPs. The antibacterial activity of biosynthesized AgNPs was assessed by testing promptly available gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial strain and antioxidant activity was calculated by DPPH assay. The overall outcomes of the studies concluded that the application of the biogenic synthesis of AgNPs of B. asiaticaas an antioxidant and antibacterial agent is more potent showing IC50 value 65.1±1.30 μg/mL and the highest zone of inhibition 15 mm in diameter against S. aureus.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Eman Alzahrani

Development of selective colorimetric detectors that can use green-fabricated silver nanoparticles’ (AgNPs) with localized surface plasmon resonances (LSPRs) to rapidly, simply, and selectively detect HgII ions was undertaken in this study. Onion extract was used for synthesising photo-induced green crystalline silver nanoparticles (NPs). The formation of nanoparticles is enhanced when ultrasound irradiation is present; bioligands could serve as stabilizing and reducing agents. Different methods of measurement, including UV-Vis, TEM,SEM/EDAX,FT−IR, and XRD, are effective for characterization of nanoparticles. The spherical nature of green-fabricated AgNPs is confirmed by TEM. High-density, spherical, and uniformly formed silver nanoparticle shapes were found in silver nanoparticle SEM images. The arrangement of AgNPs in the form of face-centered cubic structures was confirmed by XRD patterns. The formation of impurity-free AgNPs was confirmed using the EDAX analysis results. Hg2+ with excellent sensitivity was sensitively and selectively detected by employing green-synthesized silver nanoparticles. The reduction of Ag (1) to Ag (0) was confirmed by a slight increase in Hg (II) concentration and progressive reduction of green-synthesized AgNPs, whose absorbance changed abruptly. The reduction of LSPRs by the phosphate buffer medium enables AgNPs to sensitively and selectively detect Hg2+ ions by providing good environment. Besides, a selective, sensitive, simple, and rapid method that is proposed for detecting Hg (II) ions in samples of water is presented in the study. Harmful mercury ions in real samples of water (tap and ground water) can colorimetrically and selectively be detected using the AgNPs. The results showed an RSD of below 6% and over 92% of good recovery.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2382 ◽  
Author(s):  
Muhammad Jamshed Khan ◽  
Suriya Kumari ◽  
Kamyar Shameli ◽  
Jinap Selamat ◽  
Awis Qurni Sazili

Nanoparticles (NPs) are, frequently, being utilized in multi-dimensional enterprises. Silver nanoparticles (AgNPs) have attracted researchers in the last decade due to their exceptional efficacy at very low volume and stability at higher temperatures. Due to certain limitations of the chemical method of synthesis, AgNPs can be obtained by physical methods including sun rays, microwaves and ultraviolet (UV) radiation. In the current study, the synthesis of pullulan mediated silver nanoparticles (P-AgNPs) was achieved through ultraviolet (UV) irradiation, with a wavelength of 365 nm, for 96 h. P-AgNPs were formed after 24 h of UV-irradiation time and expressed spectra maxima as 415 nm, after 96 h, in UV-vis spectroscopy. The crystallographic structure was “face centered cubic (fcc)” as confirmed by powder X-ray diffraction (PXRD). Furthermore, high resolution transmission electron microscopy (HRTEM) proved that P-AgNPs were covered with a thin layer of pullulan, with a mean crystalline size of 6.02 ± 2.37. The average lattice fringe spacing of nanoparticles was confirmed as 0.235 nm with quasi-spherical characteristics, by selected area electron diffraction (SAED) analysis. These green synthesized P-AgNPs can be utilized efficiently, as an active food and meat preservative, when incorporated into the edible films.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2000 ◽  
Vol 15 (10) ◽  
pp. 2121-2124 ◽  
Author(s):  
Y. Sugawara ◽  
N. Shibata ◽  
S. Hara ◽  
Y. Ikuhara

A titanium thin film was deposited on the flat (0001) face of a 6H–SiC by electron beam evaporation at room temperature in a vacuum of 5.1 × 10−8 Pa. The Ti film was epitaxially grown on the surface, and the interface between Ti and SiC was characterized by high-resolution electron microscopy. It was found that the structure of the deposited titanium is face-centered cubic (fcc), although bulk titanium metal usually has a hexagonal close-packed or body-centered cubic crystal structure. We believe that the unusual fcc structure of Ti thin film is due to the high adhesion of the film to the substrate and the high degree of coherency between them. The orientation relationship of the fcc-Ti/6H–SiC interface was (111)fcc-Ti//(0001)6H–SiC and [110]fcc-Ti//[1120]6H−SiC. Preliminary calculations indicate that this orientation relationship maximizes the lattice coherency across the interface.


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


2019 ◽  
Vol 31 (12) ◽  
pp. 2804-2810
Author(s):  
Anti Kolonial Prodjosantoso ◽  
Oktanio Sigit Prawoko ◽  
Maximus Pranjoto Utomo ◽  
Lis Permana Sari

In this article, the synthesis of silver nanoparticles through a reduction reaction process using Salacca zalacca extract is reported. The AgNPs were characterized using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-visible spectrophotometry methods. The AgNPs antibacterial activity was determined against of Gram-positive bacteria (Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli). The main functional groups contained in Salacca zalacca extract are carbonyl, hydroxyl and nitrile groups, which are believed to reduce the silver ions to metal. The surface plasmon resonance values of brownish red AgNPs are in the range of 410 nm to 460 nm. The structure of AgNPs is face centered cubic (FCC). The diameter of silver nanoparticles crystallite is 14.2 ± 2.6 nm. The AgNPs growth inhibition zones of Escherichia coli and Staphylococcus epidermidis are 9.6 mm and 9.2 mm, respectively.


NANO ◽  
2011 ◽  
Vol 06 (04) ◽  
pp. 295-300 ◽  
Author(s):  
NISHAT ARSHI ◽  
FAHEEM AHMED ◽  
M. S. ANWAR ◽  
SHALENDRA KUMAR ◽  
BON HEUN KOO ◽  
...  

This paper reports the study on the synthesis and characterization of silver nanocrystals by a two-step synthesis procedure. The first step is the solution-free hand grinding of silver foil and sugar at room temperature for few minutes. The second step is the thermal decomposition of silver/sugar composite to form silver nanocrystals. The as-synthesized silver nanocrystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet visible (UV/Vis) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM) studies. The XRD pattern showed a face-centered cubic structure (single phase) with high crystallinity. The lattice parameters calculated from XRD pattern were found to be a = 4.12 Å for silver nanocrystals with average grain size of ~ 19 nm. The energy dispersive analysis of X-rays (EDAX) of silver nanocrystals confirmed the presence of silver and no peak of any secondary phase was detected. FESEM and AFM studies showed that the crystals have cube-like morphology. TEM results showed that the size of silver nanocrystals was found to be ~ 22 nm. This novel synthesis route, not reported earlier, would be a promising candidate for a variety of future applications of silver nanocrystals.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sudip Some ◽  
Onur Bulut ◽  
Kinkar Biswas ◽  
Anoop Kumar ◽  
Anupam Roy ◽  
...  

Abstract Herein, we report the synthesis of silver nanoparticles (AgNPs) by a green route using the aqueous leaf extract of Morus indica L. V1. The synthesized AgNPs exhibited maximum UV-Vis absorbance at 460 nm due to surface plasmon resonance. The average diameter (~54 nm) of AgNPs was measured from HR-TEM analysis. EDX spectra also supported the formation of AgNPs, and negative zeta potential value (−14 mV) suggested its stability. Moreover, a shift in the carbonyl stretching (from 1639 cm−1 to 1630 cm−1) was noted in the FT-IR spectra of leaf extract after AgNPs synthesis which confirm the role of natural products present in leaves for the conversion of silver ions to AgNPs. The four bright circular rings (111), (200), (220) and (311) observed in the selected area electron diffraction pattern are the characteristic reflections of face centered cubic crystalline silver. LC-MS/MS study revealed the presence of phytochemicals in the leaf extract which is responsible for the reduction of silver ions. MTT assay was performed to investigate the cytotoxicity of AgNPs against two human cell lines, namely HepG2 and WRL-68. The antibacterial study revealed that MIC value of the synthesized AgNPs was 80 µg/ml against Escherichia coli K12 and Staphylococcus aureus (MTCC 96). Finally, the synthesized AgNPs at 10 µg/ml dosages showed beneficial effects on the survivability, body weights of the Bombyx mori L. larvae, pupae, cocoons and shells weights via enhancing the feed efficacy.


Sign in / Sign up

Export Citation Format

Share Document