Removal of radioactive cesium from liquid waste by zeolite

2021 ◽  
Vol 2 (2) ◽  
pp. 39-47
Author(s):  
Aamir Abdullah Mohammed ◽  
Hayder Saleem Hussein ◽  
Salam Khudhair Abdullah

A radioactive fluid waste polluted with cesium-137 from Al-Tuwaitha site -south of Baghdad-Iraq is used in this paper. Commercial zeolite is used as a sorbent material in the present work for the removal of radioactive cesium-137. The removal efficiency for radioactive liquid was 96.43 % with 2 h mixing time, 0.04 g sorbent mass and pH=6.8 and at room temperature. The Freundlich and Langmuir isotherm models were found to represent the experimental results well and these results are more consistent with Freundlich model than Langmuir model.

2021 ◽  
pp. 871-877
Author(s):  
Aamir Abdullah Mohammed ◽  
Hayder S. Hussain ◽  
Salam K. Al-Nasri

Radioactive liquid waste contaminated with cesium-137 found in the radiochemistry laboratories at Tuwaitha site, south of Baghdad, was treated in this work. Bentonite was used as a sorbent material for the removal of radioactive cesium-137 from liquid waste by ion exchange method. The results indicated that the best removal efficiency obtained was 95.13% with experimental conditions of 2 h mixture time, 0.04 g sorbent mass, and pH=10 for the radioactive liquid. It was found that the experimental results match well with Langmuir and Freundlich models, with better matching with the latter.


2021 ◽  
Vol 19 (9) ◽  
pp. 46-54
Author(s):  
Makarim A. Mahdi ◽  
Aymen A.R. Jawad ◽  
Aseel M. Aljeboree ◽  
Layth S. Jasim ◽  
Ayad F. Alkaim

The AAc/GO nanocomposite hydrogel was successfully employed as a polymeric Nano sorbent of the removal efficiency of M G dye from the model. The complication of the mechanism of the adsorption system was completely exposed by examining how solution pH affects adsorption, Ionic strength isotherm models, kinetic models, and thermodynamics. The adsorption of the MG dye was greatly dependent on the solution pH. The Freundlich model has been demonstrated to be the most accurate in describing the MG dye sorption, whilst the Langmuir model was shown to be the least accurate. Additionally, these integrated mechanisms fit nicely within the framework of a pseudo-second-order model. Additionally, the contact time at equilibrium short (ten minutes) required to MG removes demonstrates the AAc/GO nanocomposite hydrogel can be considered an efficient and potentially useful adsorbent for MG removal from industrial effluents.


2015 ◽  
Vol 12 (1) ◽  
pp. 148-156
Author(s):  
Baghdad Science Journal

The subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equations.


2021 ◽  
Vol 19 (49) ◽  
pp. 1-6
Author(s):  
Amir Abdullah Mohammed ◽  
Hayder Saleem Hussain ◽  
Salam K. Abdullah

  Prepared zeolite type A was used for the removal of cesium ions from aqueous solution. The experimental data were analyzed by Langmuir, Freundlich isotherms. Various parameters, such as contact time, zeolite weight, pH, and initial concentration, were studied The results indicated that the highestt removal efficiency was  95.53% at (2h time, 0.04 g weight, and pH=6.8). The results also showed that the Freundlic model fits well with the experimental results and is better than the Langmuir model.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012019
Author(s):  
I Syauqiah ◽  
D Nurandini ◽  
N P Prihatini ◽  
Jamiyaturrasidah

Abstract The process of manufacturing Sasirangan - a traditional fabric of South Kalimantan - has an impact that affects environmental pollution, namely the dyeing process of the fabric. The synthetic dyes used contain heavy metals and one of those toxic metals is copper (Cu). This study aims to determine the adsorption capacity of rice husk activated carbon adsorbent by adjusting the adsorption pattern based on isotherm models as the treatment to sasirangan liquid waste. The method consists of three stages: preparation of adsorbent by carbonization process, chemical and physical activation, then continued by adsorption process of Cu metal with carbon from rice husks with variations of adsorbent dose (2, 4, and 6 grams). This treatment was conducted by batch process. In this reseach, the adsorption capacity of rice husk adsorbent towards heavy metal Cu in sasirangan liquid waste was determined from the equilibrium state with the Langmuir isotherm equation and Freundlich isotherm equation. Based on isothermal studies of adsorption data, the correlation coefficient values obtained from the isotherm model approaches are: for dose of 2 grams adsorbent, Langmuir R2 = 0.9991 and Freundlich R2 = 0.9981; for dose of 4 grams adsorbent, Langmuir R2 = 0.9992 and Freundlich R2 = 0.9989; for dose of 6 grams adsorbent, Langmuir R2 = 0.9990 and Freundlich R2 = 0.9986. The results of investigation indicate that adsorption data correlated well with Langmuir isotherm model.


2021 ◽  

<p>The current study investigates the ability of Nano magnetite as an adsorbent to remove organic materials from oilfield-produced water (PW). The effect of several variables on the removal procedure was investigated, such as nano magnetite dose, pH of solution and adsorption period. The adsorbent was carefully examined and completed using several approaches FTIR, SEM and surface area analyzer. The results show that the best organic removal reached more than 89 % at 0.8 g Nano magnetite dose in 120 min through pH = 6.0 at room temperature. Three mathematical isotherm models of adsorption were used in this study: Langmuir, Freundlich and Brunauer-Emmett-Teller. It seems that the Langmuir model and Brunauer-Emmett-Teller was best fitted model over the experimental variety with a correlation coefficient of 0.994 and 0.995 respectively.</p>


2014 ◽  
Vol 16 (4) ◽  
pp. 597-608 ◽  

<div> <p>Removal of Fe(II) and Mn(II) ions from aqueous solution by fungal biosorbent <em>Aspergillus sp. TU-GM14</em>immobilized on <em>Detarium microcarpum</em> matrix was investigated in this study. Effects of biosorption parameters pH, biosorbent concentration, bead size and equilibrium time on Fe(II) and Mn(II) ions sorption were also determined. Equilibrium was attained within in 3 hours while optimum Fe(II) and Mn(II) ions removal was observed at pH 6, 8 mm bead size, 2 g l<sup>-1</sup> spore load respectively. Adsorption capacity was described using Langmuir, Freundlich and BET isotherm models. The experimental data fitted best to the Freundlich model (<em>R</em><sup>2</sup> 0.992 and 0.996 for Mn(II) and Fe(II) respectively). Favourable surface sorption process was described by Langmuir isotherm for both metals (<em>Q</em><sub>max </sub>34 and 14 mg g<sup>-1</sup> for Mn(II) and Fe(II) ions) while the BET isotherm constant, <em>B</em>, described high metals sorption beyond the biosorbent surface in a multi-layer sorption process (4.8 and 9.0 for Mn(II) and Fe(II)&nbsp; respectively). Results of the study showed that <em>Aspergillus sp. TU-GM14 </em>biosorbent can remove large quantities of Fe(II) and Mn(II) ions from solution in both surface and multi-layer sorption process with <em>Detarium microcarpum</em> acting as a cheap immobilization matrix.</p> </div> <p>&nbsp;</p>


2020 ◽  
pp. 15-20
Author(s):  
Ersin Yucel ◽  
Mine Yucel

In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.


2003 ◽  
Vol 792 ◽  
Author(s):  
V. Aubin ◽  
D. Caurant ◽  
D. Gourier ◽  
N. Baffier ◽  
S. Esnouf ◽  
...  

ABSTRACTProgress on separating the long-lived fission products from the high level radioactive liquid waste (HLW) has led to the development of specific host matrices, notably for the immobilization of cesium. Hollandite (nominally BaAl2Ti6O16), one of the main phases constituting Synroc, receives renewed interest as specific Cs-host wasteform. The radioactive cesium isotopes consist of short-lived Cs and Cs of high activities and Cs with long lifetime, all decaying according to Cs+→Ba2++e- (β) + γ. Therefore, Cs-host forms must be both heat and (β,γ)-radiation resistant. The purpose of this study is to estimate the stability of single phase hollandite under external β and γ radiation, simulating the decay of Cs. A hollandite ceramic of simple composition (Ba1.16Al2.32Ti5.68O16) was essentially irradiated by 1 and 2.5 MeV electrons with different fluences to simulate the β particles emitted by cesium. The generation of point defects was then followed by Electron Paramagnetic Resonance (EPR). All these electron irradiations generated defects of the same nature (oxygen centers and Ti3+ ions) but in different proportions varying with electron energy and fluence. The annealing of irradiated samples lead to the disappearance of the latter defects but gave rise to two other types of defects (aggregates of light elements and titanyl ions). It is necessary to heat at relatively high temperature (T=800°C) to recover an EPR spectrum similar to that of the pristine material. The stability of hollandite phase under radioactive cesium irradiation during the waste storage is discussed.


2020 ◽  
Vol 108 (10) ◽  
pp. 799-808
Author(s):  
Mostafa M. Hamed ◽  
Mahmoud M. S. Ali ◽  
Aly A. Helal

AbstractRemoval of 137Cs radionuclides from the environment has engrossed the concern of researchers after Fukushima accident. The leakage of radioactive cesium ions can lead up to surface and groundwater contamination, and this leads to pollution of drinking water sources. In this work, corchorus olitorius stalks has been used as a novel precursor for production of low-cost mesoporous activated carbon (Meso-AC) and HNO3/H2O2-modified Meso-AC (m-Meso-AC). The physicochemical properties of all adsorbents were evaluated. The influences of sorption parameters and presence of some ligands (humic acid, fulvic acid, and EDTA) on the sorption of 137Cs were studied. The maximum 137Cs capacity of m-Meso-AC was found to be 58.74 mg/g. Efficiency of the new adsorbent to remove 137Cs radionuclides from natural waters (tap, river, and groundwater) was investigated. The studies showed that new adsorbent could be used as promising material for the retention of 137Cs from real radioactive waste and natural water samples.


Sign in / Sign up

Export Citation Format

Share Document