scholarly journals Pengaruh Penambahan Admixture Terhadap Kuat Tekan Beton Dari Berbagai Merek Semen

2020 ◽  
Vol 1 (2) ◽  
pp. 27-43
Author(s):  
Dian Fitrawansyah ◽  
Irwan Lakawa ◽  
Sulaiman .

Tonasa cement, Bosowa cement, and Tiga Roda cement havediffenrence characteristic from procedure to produce andcomposition of ingredients, the difference are probably reach thediffenrence respond or effected from three brands are mixed fromadmixture to be a mix concrete. One of the commonly admixture andeasy to find is Damdex Brand that can increase the strengthness ofthe concrete. The aimed of this investigation to analyse the effect ofadmixture (Damdex) variation toward concrete compressive strengthby comparison the cement brands.The methodology of thisinvestigation is experiment method or material test in laboratory.The concrete compressive strength will calculated during 28 daysage, after giving an admixture (0%,1%, 1,5%,2%, 2,5% dan 3%) withdifferent brands cement variation,but composition of Concrete suchAgregat and Water are same from each treatment. The sample fromeach treatment totally 3 tested samples. The result of thisinvestigation, Tonasa cement is increase with concrete compressivestrength from highest of admixture (Damdex) from admixture level is2% which gain compressive strength 385,24 Kg/cm2 or increasingamount 23,52% from normal concrete compressive strength.Bosowa brand is increase with concrete compressive strength fromthe highest admixture ( Damdex) the level is 2.5 % with compressivestrength gain is 338,00 Kg/cm2 or increase amount 10,15% fromNormal concrete compressive strength.Compressive strength ofTiga Roda brand also gain increase from admixture with highestlevel is 3% which 354,35 Kg/cm2 compressive or increase amount18,60% from normal concrete compressive strength

2021 ◽  
Vol 29 (2) ◽  
pp. 146
Author(s):  
Johan Oberlyn Simanjuntak ◽  
Tiurma Elita Saragi ◽  
Nurvita Insani Simanjuntak ◽  
Imesari Hulu

One of the factors of economic growth is the development of infrastructure to encourage the creation of various activities. Concrete becomes an important part in the process of infrastructure development. For the concrete mixture, gravel is the most important part for concrete constituents. The limitation of gravel in nature led to the creation of various studies to replacement solutions for the use of gracel in concrete mixtures.Candlenut shell is one of the waste is not getting attention in its uses. Department of Plantation North Sumatera Province recorded the candlenut production in North Sumatera in 2019 reached 13,529.40 tons. The study aims for replace some of the gravel in the concrete mixture by using a candle nut shell. The variety of concrete mixture with candle nut is 10%, 20% and 30%. Testing was conducted on concrete ages 7 days, 14 days, 21 days and 28 days aimed at finding the difference between normal concrete compressive strength without additional candlenut shells and concrete with additional candlenut shells. The result shows that there was a decrease in the values of concrete compressive strength for each group of test objects. The decrease is due to the candlenut shell having higher and water absorption compared to gravel.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


Jurnal Tekno ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 11-20
Author(s):  
Ahmad Junaidi ◽  
R Dewo Hiraliyamaesa Hariyanto

Perumpung (Eulalia japonica) is a wild plant that usually grows on the banks of river. The locals consider this plant as a waste/pest, but the authors are interested in researching perumpung because they are similar to bamboo, sugarcane and other fibrous plants. In this study, the authors aims to compare the compressive strength of normal concrete with the compressive strength of concrete added with Perumpung ash at 28-days-old K-300. The study used a cube-shaped test object (15 x 15 x 15 cm) with 6 samples for each condition. The total number of test objects is 48, which consists of 8 conditions, namely normal conditions and 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20% addition of perumpung ash by cement weight. The results obtained that the compressive strength of 28-days-old concrete under normal conditions was 316,060 kg/cm2 and the addition of 5% ash was 331.583 kg/cm2, 7.5% was 337.181 kg/cm2, 10% was 341.813 kg/cm2, 12 ,5% is 347,045 kg/cm2, 15% is 353,889 kg/cm2, 17.5% is 311,160 kg/cm2 and 20% is 298.44 kg/cm2. From the results above it can be concluded that the addition of 15% Perumpung Ash to the concrete mixture increases the maximum characteristic concrete compressive strength by 353.889 kg/cm2.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 625 ◽  
Author(s):  
Sherif Yehia ◽  
Akmal Abdelfatah ◽  
Doaa Mansour

In this paper, concrete mixes utilizing two sizes of natural aggregate and two sources of lightweight and recycled aggregates were used to investigate the effect of aggregate type and specimen size and shape on the compressive strength of concrete. In addition, samples from ready-mix concrete producers with different strengths were evaluated using standard size cylinders and cubes. Results were obtained on the 7th, 28th, and 90th day. In addition, flexural strength, split tension, and modulus of elasticity were evaluated on the 28th and 90th day. Statistical analyses were conducted to examine the significance of the difference between the compressive strength values for each two mixes using tests of hypotheses. Moreover, other mechanical properties as a function of compressive strength were discussed and compared to those predicated by the American Concrete Institute (ACI) specifications. Results indicate specimen shape has a noticeable effect on the compressive strength as the Cylinder/Cube ratio on the 90th day was ranging between 0.781 and 0.929. The concrete compressive strength and modulus of elasticity were significantly affected by the aggregate type. The flexural strength and split tensile strength were less affected by the aggregate type, which was also confirmed by the values predicted with the ACI equations.


2021 ◽  
Vol 2 (1) ◽  
pp. 29-36
Author(s):  
Muhammad Muhsar ◽  
Abdul Kadir ◽  
Sulaiman Sulaiman

The purpose of this study was to Analyze the characteristics of theaggregates used in concrete mixtures and analyze how muchincrease in compressive strength of concrete with a variation ofnickel slag substitution 0%, 5%, 15%, 25% compared with normalconcrete. The characteristics of the material examined are watercontent, sludge content, specific gravity and absorption, volumeweight, abrasion with los angeles machines, and filter analysis.While the large increase in compressive strength of concrete can betested at the age of 7 days, 14 days, 28 days and 35 days. From the results of the analysis of the characteristics of nickel slagwaste in concrete mixes meet the test standards in concretemixtures, with a moisture content of 0.86%, sludge content of 0.44%,specific gravity of 2.94 gr / cm3, volume weight of 1.76 gr / cm3,abrasion 36.07%. And a large increase in compressive strength ofconcrete with a variation of nickel slag substitution of 0%, 5%, 15%,25% compared to normal concrete is increasing. The highestpercentage increase in concrete compressive strength is found inconcrete compressive strength between a variation of 15% with avariation of 25% at 14 days concrete age, with a percentage increasein value of 13.13%.


2019 ◽  
Vol 2 (2) ◽  
pp. 333
Author(s):  
Didik Hadi Prayogo ◽  
Ahmad Ridwan ◽  
Sigit Winarto

Concrete is one of the most vital building blocks, from columns, bricks, paving to roads made of concrete, so the use of concrete tends to be high. Concrete is often used as the main buffer in a building, so good quality is needed, but this is not accompanied by a declining quality of the material, so it requires innovation in the addition of new materials that can at least reduce the needs of the main material for making concrete, one of which is the utilization of Gypsum Board waste and red brick waste. The results of testing the concrete compressive strength test with the addition of Gypsum Board waste and red brick waste to cement obtained pretty good results. Concrete, which has the highest average compressive strength than normal concrete, has concrete with a mixture of red brick and gypsum waste of 10% each with a compressive strength of 250.56 kg / cm², and which has the lowest compressive strength have concrete with a mixture of red bricks and gypsum waste 15% each with a compressive strength of 195.56 kg / cm².Beton merupakan salah satu unsur penyusun bangunan paling vital mulai dari kolom,bata, paving hingga jalan terbuat dari beton sehingga penggunaan beton cenderung tinggi. Beton sering digunakan sebagai bahan penyangga utama pada suatu bangunan maka diperlukan kualitas yang baik, namun hal tersebut tidak di sertai dengan kualitas bahan yang kian menurun,makadiperlukan inovasi penambahan bahan baru yang setidaknya dapat mengurangi kebutuhan bahan utama pembuat beton, salah satunya pemanfaatan limbah Gypsum Board dan limbah batu bata merah Hasil dari pengetesan uji kuat tekan beton dengan penambahan limbah Gypsum Board dan limbah batu bata merah terhadap semen didapatkanhasil yang cukup bagus Beton yang memiliki nilai kuat tekan rata-rata paling tinggi selain beton normal di miliki beton dengan campuran batu bata merah dan limbah gypsum masing-masing 10% dengan nilai kuat tekan sebesar 250,56 Kg/cm²,dan yang memiliki nilai kuat tekan paling rendah di miliki beton dengan campuran batu bata merah dan limbah gypsum masing-masing 15% dengan nilai kuat tekan 195,56 Kg/cm².


Author(s):  
Aminullah Aminullah

ABSTRACTHigh rainfall intensity maybe occur during the dry season. This can certainly disturb the erection of a building project, especially in a case of construction works requiring dry condition, such in concrete item. Various attempts have been made to reduce the height of the puddle, when mixing the fresh concrete in a frame work of sub-structure elements, e.g. the foot-plate foundation. The puddles in the foundry area potentially affect the composition of the mortar especially in water-cement ratio (wcr). This caused a decrease of compressive strength (f’c) of the concrete then causing the quality decreaseof the concrete. This research used two types of mixed concreteconditions: dry and waterlogged condition. The water cement ratioshould be changed when mixing concrete had been performed in waterlogged condition. One determinedcontrol sample was based on a normal concrete mixture with characteristic strength (f'c) = 25 MPa. The standard of concrete mixing used is SNI-2834-2000 on the mixingprocedure of a normal concrete mixed design. The concrete sampleswere tested using a concrete compressor universal test machine (UTM) than comparedto hammer and Ultra Pulse Velocity (UPV) test.Based on the results of the study, the quality of mixed concrete in waterlogged conditions was much lower than the compressive strength design. The percentage reduction in compressed strength of mixed concrete under water submerged conditions ranged from 30.82% to 32.63% to normal concrete compressive strength. The higher level of puddlecaused the lower compressive strength of the concrete.There was a match between the measurements of concrete compressive strength using UTM comparedto hammer and UPV tests.The percentage differences in measurement of hammer test to UTM test results were 10.73% and 9.26% to 21.79% by the UPV test. Keywords: concrete, foot plate, mix design, puddle, wcr Intesitas hujan yang cukup tinggi juga dapat terjadi pada musim kemarau. Hal ini tentu dapat mengganggu pelaksanaan suatu pekerjaan bangunan, khususnya pekerjaan konstruksi yang telah disyaratkan untuk dikerjakan dalam kondisi kering.  Berbagai macam upaya telah dilakukan untuk mengurangi tinggi genangan air pada saat pengecoran elemen sub-structure, seperti halnya pondasi telapak (foot-plate). Genangan air yang terdapat pada daerah pengecoran berpotensi mempengaruhi komposisi adukan khususnya pada faktor air semen (fas). Hal tersebut dapat mengakibatkan kuat tekan beton (f’c) berkurang sehingga mengakibatkan mutu beton menjadi berkurang. Kajian ini menggunakan dua jenis kondisi pengecoran, yaitu: kondisi kering dan kondisi pada genangan air. Faktor air semen berubah seiring dengan kegiatan pengecoran beton dalam kondisi basah (tergenang air).  Satu buah sampel kontrol telah ditentukan berdasarkan adukan beton normal dengan kekuatan karakteristik (f’c) = 25 MPa. Standar pencampuran beton yang digunakan adalah SNI-2834-2000 tentang tata cara pembuatan rencana campuran beton normal. Sampel beton akan diuji dengan alat kuat tekan beton yang dilengkapi dengan dial ekstensometer sehingga dapat diperoleh kurva tegangan-regangan beton berdasarkan variasi fas yang diberikan. Berdasarkan hasil penelitianmaka kualitas beton yang dicor dalam kondisi tergenang air jauh lebih rendah dari nilai kuat tekan beton desain,  Persentase penurunan kuat tekan beton yang dicor dalam kondisi terendam air berkisar antara 30,82% sampai dengan 32,63% terhadap kuat tekan beton normal,  Semakin tinggi genangan air maka semakin rendah kuat tekan beton, Terdapat kesesuaian antara pengukuran kuat tekan beton menggunakan UTM  dengan uji hammer dan UPV, Persentase perbedaan pengukuran uji hammer terhadap hasil uji UTM adalah 10,73% dan 9,26% sampai dengan Kualitas beton yang dicor dalam kondisi tergenang air jauh lebih rendah dari nilai kuat tekan beton desain,  Persentase penurunan kuat tekan beton yang dicor dalam kondisi terendam air berkisar antara 30,82% sampai dengan 32,63% terhadap kuat tekan beton normal,  Semakin tinggi genangan air maka semakin rendah kuat tekan beton, Terdapat kesesuaian antara pengukuran kuat tekan beton menggunakan UTM  dengan uji hammer dan UPV, Persentase perbedaan pengukuran uji hammer terhadap hasil uji UTM adalah 10,73% dan 9,26% sampai dengan21,79% untuk uji UPV.Kata kunci: beton, foot plate, genangan, campuran


2021 ◽  
Vol 921 (1) ◽  
pp. 012007
Author(s):  
M Tumpu ◽  
Irianto ◽  
H Parung

Abstract Concrete curing is an effort made to optimize the results of concrete casting. This action needs to be done because it has a major effect on the quality and strength of the concrete, one of which is so that the concrete does not lose moisture too quickly, because later this condition will lead to excessive shrinkage in the concrete. As a result, the concrete can experience cracks. This will cause the construction work to be less qualified and endanger construction users. The purpose of this study is to determine the effect of concrete treatment methods on the value of normal concrete compressive strength. Concrete curing can be carried out by several methods according to the type and condition of the structural elements to be treated. From the results of the study, it was found that the curing method of concrete had an effect on the value of normal concrete compressive strength, namely that the average compressive strength value in the fresh water immersion treatment method was 23.730 MPa, the treatment method for wrapping concrete with gunny sacks was 22.349 MPa, the treatment method of wrapping concrete with plastic is 22.306 MPa, and in the treatment method of pouring concrete with fresh water is 21.199 MPa. The average value of the maximum compressive strength occurred in the treatment method with fresh water immersion, namely 23.73 MPa, and the minimum compressive strength value that occurred was found in the treatment method with fresh water sprinkling, namely 21.199 MPa. Thus, that concrete curing is good, namely, by soaking the concrete with fresh water.


Sign in / Sign up

Export Citation Format

Share Document