scholarly journals Aspectos ambientais e infecciosos relacionados à imunossupressão em cetáceos: uma breve revisão

2018 ◽  
Vol 39 (6) ◽  
pp. 2897
Author(s):  
Mariana Schechtel Koch ◽  
Victor De Pasquale da Silva ◽  
Ana Paula Frederico Rodrigues Loureiro Bracarense ◽  
Camila Domit

The analysis of the health status of sentinel animals is a key element for the evaluation of ecosystem health conditions, since these animals respond to small and large scale changes in ecological factors and the quality of the environment. In the marine environment, the changes are systemic and accumulate impacts of coastal zones and oceanic activities, with aquatic mammals being species that reflect changes in biological and health parameters. For these animals several studies have reported an increase in the frequency and diversity of diseases, including infections by pathogens from the terrestrial environment. This increase may be related to impairment of the immune system activity of these organisms in response to potential synergistic factors. In cetaceans, immunosuppression may be caused by infection with viral agents, such as Morbillivirus, which induce severe lymphoid depletion and is responsible for several cases of mass mortality; chemical contamination, highlighting the organochlorines and trace elements (mainly mercury and cadmium); and even by chronic stress. Anthropic impacts are important stressors, and the consequences are more evident in animals of coastal habits, which leads to a constant release of glucocorticoid hormones and consequent lymphoid depletion, a mechanism similar to that occurring in terrestrial mammals. Immunosuppressed animals are susceptible to opportunistic diseases, some more severe and rare, with the risk of decline of populations. The objective of this review was to provide information on the aspects related to immunosuppression in cetaceans, associating etiological factors and pathological findings, and to highlight the relevance of the evaluation of the endocrine and immune system of marine animals as a reflection of the health status of marine ecosystems.

2020 ◽  
pp. 223-248
Author(s):  
David Busbee ◽  
Ian Tizard ◽  
Jeffrey Sroit ◽  
Davide Ferrirc ◽  
Ellen Orr-reeves

This paper provides a detailed review of the immunotoxicological effects of environmental pollutants on the health of marine mammals, particularly in relation to their impact on the immune system and mechanisms of toxicity. Environmental pollutants are increasingly implicated (both directly and indirectly) with the onset of infectious disease and related mortality incidents in marine mammals,. The release of chemicals into the marine environment and the subsequent bioaccumulation up the food chain may pose a serious threat to marine mammals inhabiting contaminated areas; this has been documented in various studies of pollutant concentrations in tissue samples and large scale mass mortalities. Data correlating pollutant residues with altered reproductive/developmental states, and immune system dysfunction in particular, are reported for terrestrial mammals and suggest a similar association in marine mammals. Immunology is emphasised as a tool for assessing marine mammal health using quantitative and qualitative techniques to establish the effects of chemical pollutants. This has become increasingly important in relation to the subsequent dangers that may be posed to humans through any indirect exposure via the food chain.


1995 ◽  
pp. 3-21
Author(s):  
S. S. Kholod

One of the most difficult tasks in large-scale vegetation mapping is the clarification of mechanisms of the internal integration of vegetation cover territorial units. Traditional way of searching such mechanisms is the study of ecological factors controlling the space heterogeneity of vegetation cover. In essence, this is autecological analysis of vegetation. We propose another way of searching the mechanisms of territorial integration of vegetation. It is connected with intracoenotic interrelation, in particular, with the changing role of edificator synusium in a community along the altitudinal gradient. This way of searching is illustrated in the model-plot in subarctic tundra of Central Chukotka. Our further suggestion concerns the way of depicting these mechanisms on large-scale vegetation map. As a model object we chose the catena, that is the landscape formation including all geomorphjc positions of a slope, joint by the process of moving the material down the slope. The process of peneplanation of a mountain system for a long geological time favours to the levelling the lower (accumulative) parts of slopes. The colonization of these parts of the slope by the vegetation variants, corresponding to the lowest part of catena is the result of peneplanation. Vegetation of this part of catena makes a certain biogeocoenotic work which is the levelling of the small infralandscape limits and of the boundaries in vegetation cover. This process we name as the continualization on catena. In this process the variants of vegetation in the lower part of catena are being broken into separate synusiums. This is the process of decumbation of layers described by V. B. Sochava. Up to the slope the edificator power of the shrub synusiums sharply decreases. Moss and herb synusium have "to seek" the habitats similar to those under the shrub canopy. The competition between the synusium arises resulting in arrangement of a certain spatial assemblage of vegetation cover elements. In such assemblage the position of each element is determined by both biotic (interrelation with other coenotic elements) and abiotic (presence of appropriate habitats) factors. Taking into account the biogeocoenotic character of the process of continualization on catena we name such spatial assemblage an exolutionary-biogeocoenotic series. The space within each evolutionary-biogeocoenotic series is divided by ecological barriers into some functional zones. In each of the such zones the struggle between synusiums has its individual expression and direction. In the start zone of catena (extensive pediment) the interrelations of synusiums and layers control the mutual spatial arrangement of these elements at the largest extent. Here, as a rule, there predominate edificator synusiums of low and dwarfshrubs. In the first order limit zone (the bend of pediment to the above part of the slope) one-species herb and moss synusiums, oftenly substituting each other in similar habitats, get prevalence. In the zone of active colonization of slope (denudation slope) the coenotic factor has the least role in the spatial distribution of the vegetation cover elements. In particular, phytocoenotic interactions take place only within separate microcoenoses of herbs, mosses and lichens. In the zone of the attenuation of continualization process (the upper most parts of slope, crests) phytocoenotic interactions are almost absent and the spatial distribution of vegetation cover elements depends exclusively on the abiotic factors. The principal scheme of the distribution of vegetation cover elements and the disposition of functional zones on catena are shown on block-diagram (fig. 1).


2000 ◽  
Vol 78 (1) ◽  
pp. 49-59 ◽  
Author(s):  
R D Hayes ◽  
A M Baer ◽  
U Wotschikowsky ◽  
A S Harestad

We studied the kill rate by wolves (Canis lupus) after a large-scale wolf removal when populations of wolves, moose (Alces alces), and woodland caribou (Rangifer tarandus caribou) were all increasing. We followed a total of 21 wolf packs for 4 winters, measuring prey selection, kill rates, and ecological factors that could influence killing behavior. Wolf predation was found to be mainly additive on both moose and caribou populations. Kill rates by individual wolves were inversely related to pack size and unrelated to prey density or snow depth. Scavenging by ravens decreased the amount of prey biomass available for wolves to consume, especially for wolves in smaller packs. The kill rate by wolves on moose calves was not related to the number of calves available each winter. Wolves did not show a strong switching response away from moose as the ratio of caribou to moose increased in winter. The predation rate by wolves on moose was best modeled by the number and size of packs wolves were organized into each winter.


2021 ◽  
Vol 6 (5) ◽  

The most large-scale challenge aroused at the beginning of Y2020 was the global spread of the coronavirus disease 2019 (COVID-19), caused by a zoonotic beta-coronavirus. One year after we have nearly 270 thousand confirmed cases with mortality rate 1.3% in Georgia, and almost 120 billion confirmed cases with mortality rate 2.2% worldwide. As it is known, COVID-19 is triggered by coronavirus species 2 or SARS-CoV-2, which inters in the human body by binding to the angiotensin-converting enzyme 2 (ACE2) molecule on the host cell membrane via the viral spike protein and expresses complex pathological changes in many organs linked with vascular injuries. The most severe expression of this disease exposed by microscopic examination is bilateral diffuse alveolar damage with fibroblasts exudates, indicating Acute Respiratory Distress Syndrome (ARDS). Immune system plays crucial role in tissue damage. As clinical researches showed, the number of peripheral CD4+ and CD8 + T cells were significantly reduced, while their activity was hyper-expressed as evidenced by the high proportions of HLADR (CD4 3•47%) and CD38 (CD8 39•4%) double-positive fractions. Moreover, there was identified an amplified concentration of highly pro inflammatory CCR6+ Th17 in CD4 T cells. This date explains that severe tissue injury in later stages of COVID-19 is depend on the immune system abnormalities, but not on SARS-CoV-2 direct cell destruction. In the same time the scientists and doctors found out abnormalities in coagulation function in most of the severe COVID-19 patients, which were expressed in elevation of D-Dimer level and prolongation of prothrombin time, some of whom terminated in disseminated intravascular coagulation (DIC), deep venous thrombosis (DVT) or fatal pulmonary thromboembolism (PTE). At the later stage in some severe patients it was identified thrombocytopenia as a result of excessive platelets consuming, which significantly affected on treatment and prognosis. More than 300 drugs are used for the treatment of COVID-19 worldwide. Now, the most popular treatments include Remdesivir, Hydroxychloroquine, Betamethasone, Tocilizumab, anti HIV drugs, and convalescent plasma. In the same time, WHO supports vaccines distribution for immunization. Currently, almost 8 vaccines are approved by different countries and more than 180 vaccines are under the clinical trails. Conclusion & Significance: Up till now it is challenging problem to combat SARS-CoV-2 with not well-defined origin and inexplicable biological characteristics as well as to control a pandemic of COVID-19 with such a high R0, a long incubation period and different disease outcomes. Unfortunately, we have limited understandings of particular mechanisms running to abnormal expression of immune system and coagulation processes. In the same time, we don’t have complete picture of vasculopathy leading to the tissue injury and patient death. Therefore, it is problematic to manage SARS-CoV-2 induced processes successfully using available drugs with no significant restoring effect on the organ damages in severe COVID-19 patients. So, we need new targets and new drugs for the prophylaxes and treatment of COVID-19 even we have vaccines available.


Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 115 ◽  
Author(s):  
Hiba Mohammed ◽  
Elena Varoni ◽  
Andrea Cochis ◽  
Massimo Cordaro ◽  
Patrizia Gallenzi ◽  
...  

The human body is naturally colonized by a huge number of different commensal microbial species, in a relatively stable equilibrium. When this microbial community undergoes dysbiosis at any part of the body, it interacts with the innate immune system and results in a poor health status, locally or systemically. Research studies show that bacteria are capable of significantly influencing specific cells of the immune system, resulting in many diseases, including a neoplastic response. Amongst the multiple different types of diseases, pancreatic cancer and liver cirrhosis were significantly considered in this paper, as they are major fatal diseases. Recently, these two diseases were shown to be associated with increased or decreased numbers of certain oral bacterial species. These findings open the way for a broader perception and more specific investigative studies, to better understand the possible future treatment and prevention. This review aims to describe the correlation between oral dysbiosis and both pancreatic cancer and liver cirrhotic diseases, as well as demonstrating the possible diagnostic and treatment modalities, relying on the oral microbiota, itself, as prospective, simple, applicable non-invasive approaches to patients, by focusing on the state of the art. PubMed was electronically searched, using the following key words: “oral microbiota” and “pancreatic cancer” (PC), “liver cirrhosis”, “systemic involvement”, and “inflammatory mediators”. Oral dysbiosis is a common problem related to poor oral or systemic health conditions. Oral pathogens can disseminate to distant body organs via the local, oral blood circulation, or pass through the gastrointestinal tract and enter into the systemic circulation. Once oral pathogens reach an organ, they modify the immune response and stimulate the release of the inflammatory mediators, this results in a disease. Recent studies have reported a correlation between oral dysbiosis and the increased risk of pancreatic and liver diseases and provided evidence of the presence of oral pathogens in diseased organs. The profound impact that microbial communities have on human health, provides a wide domain towards precisely investigating and clearly understanding the mechanism of many diseases, including cancer. Oral microbiota is an essential contributor to health status and imbalance in this community was correlated to oral and systemic diseases. The presence of elevated numbers of certain oral bacteria, particularly P. gingivalis, as well as elevated levels of blood serum antibodies, against this bacterial species, was associated with a higher risk of pancreatic cancer and liver cirrhosis incidence. Attempts are increasingly directed towards investigating the composition of oral microbiome as a simple diagnostic approach in multiple diseases, including pancreatic and liver pathosis. Moreover, treatment efforts are concerned in the recruitment of microbiota, for remedial purposes of the aforementioned and other different diseases. Further investigation is required to confirm and clarify the role of oral microbiota in enhancing pancreatic and liver diseases. Improving the treatment modalities requires an exertion of more effort, especially, concerning the microbiome engineering and oral microbiota transplantation.


2018 ◽  
Author(s):  
Riki Rahmad

At the World Bank, coastal zone management (CZM) is a part of Integrated Coastal Management (ICM), is an interdisciplinary roomates and Intersectoral approach to problem definition and solutions in the coastal zone, it includes a range of initiatives that promote the environmentally sustainable development of coastal areas, and encompasses a range of activities such as community-based management of coastal resources, large-scale infrastructure development (ports, industrial and residential parks, etc..), pollution and erosion control, aquaculture, tourism and recreation, oil spill contingency planning, and navigational risk assessment.CZM is a process of governance that consists of the legal andinstitutional framework Necessary to Ensure that development and management plans for coastal zones are integrated with environmental and social goals, and are developed with the participation of those affected.The purpose of the ICM is to maximize the benefits providedby the coastal zone and to minimize the conflicts and Harmful effects of activities on social, cultural and environmental resources.


Author(s):  
Thomas J van Veelen ◽  
Harshinie Karunarathna ◽  
William G Bennett ◽  
Tom P Fairchild ◽  
Dominic E Reeve

The ability of coastal vegetation to attenuate waves has been well established (Moller et al., 2014). Salt marshes are vegetated coastal wetlands that can act as nature- based coastal defenses. They exhibit a range of plant species, which have been shown to differ in the amount of wave damping they provide (Mullarney & Henderson, 2018). Recent studies have shown that plant flexibility is a key parameter that controls wave energy dissipation (Paul et al., 2016). Yet, no model exists that includes plant flexibility in computationally efficient manner for large-scale coastal zones. Therefore, we have developed a new model for flexible vegetation based on the key mechanisms in the wave-vegetation interaction and applied it to an estuary with diverse salt marsh vegetation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/AjnFx3aFSzs


Author(s):  
Nicolae Bodrug ◽  

. Environmental pollution affects population health depending on the extension and the degree of exposure to environmental factors. In most cases it is difficult to obtain an accurate situation of exposure of population to harmful factors. Health status is determined by: human biology, ecological factors, the socio-economic situation of each person, and the quality of medical services. In according to regional peculiarities the interdependence of those factors could vary, but not significantly. The environmental risks are everywhere but diminishing them may improve the health status of the population.


2020 ◽  
Vol 95 (sp1) ◽  
pp. 252
Author(s):  
Hwa-Young Lee ◽  
Yeong-Han Jeong ◽  
Dong-Hwan Kim ◽  
Dong-Seag Kim ◽  
Whan-Hee Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document