scholarly journals Sensitivity analysis of WOFOST for yield simulation of cassava over the major growing areas of India

2021 ◽  
Vol 23 (4) ◽  
pp. 375-380
Author(s):  
RAJI PUSHPALATHA ◽  
GOVINDAN KUTTY ◽  
BYJU GANGADHARAN

A study was conducted to assess the meteorological sensitivity of the WOFOST crop model in simulating the yield of cassava. The sensitivity was designed by changing the present meteorological data by ±1 to ±5 %. The results has shown the minimum temperature influencing the yield of cassava (variation: 4.94 to -7.65 %) followed by the maximum temperature (yield variation: 6.39 to -6.03 %) and solar radiation (yield variation: -2.41 to 2.07 %). The trends of these meteorological variables have been further analyzed over the major cassava growing regions in India to link its variations with cassava production. A significant trend has been detected during the monsoon season in northeast India, with a decadal change of 0.63ºC. At the same time, a significant trend was detected in the peninsular region during the winter season, with a value of 0.74ºC/decade. The rate of solar dimming in northeast India during the monsoon season was -0.53 hour/decade and during the autumn season, it was -0.25 hour/decade, respectively. The meteorological sensitivity of crop model on its yield and trends may assist the decision-makers in developing appropriate plans mitigations strategies to enhance crop production to ensure food security.

Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


Author(s):  
M. Satya Swarupa Rani ◽  
R. Asha ◽  
G. M. V. Prasadarao

Globally, precipitation trend analysis in different space and time has great impact on crop-planning activities. To get accurate unbiased results a long-term climate analysis of a particular area required in large variability in both spatially, temporally. For sustainable crop production long term weather analysis act as vital role in alternation of existing cropping patterns. This study aimed at analysing the trend of rainfall events in Prakasam district of Andhra state of India the data consists of annual precipitation time series from 1991-2019. Initially study concerns with analysis of data base using descriptive statistics, later trend change was detected by using non parametric tests. The results indicate an increased trend in June and monsoon season, with a decreased trend in July and winter season at 5% level of significance.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 235-252
Author(s):  
A. K. JASWAL ◽  
P. A. KORE ◽  
VIRENDRA SINGH

Annual and seasonal variability and trends in low cloud cover over India were analyzed for the period 1961-2010. Taking all period into account, there is a general decrease in mean low cloud cover over most regions of India, but an increase in the Indo-Gangetic plains and northeast India. Long term mean low cloud cover over India has inter-annual variations with highest cloud cover (39.4%) in monsoon and lowest cloud cover (10.5%) in winter season. The annual mean low cloud cover shows significant decreasing trend of -0.45% per decade, mainly contributed by monsoon where declining rate is -1.22% per decade. Out of the total numbers of stations showing decreasing trends, 65%, 47%, 53%, 71% and 37% of the stations show significant decrease in low cloud cover for annual, winter, summer, monsoon and post monsoon respectively, with large trend magnitudes occurring in central India. Spatially, the seasonal patterns of trends in low cloud cover confirm the annual patterns in most cases. Data analyses show that low cloud cover is having a strong negative correlation with maximum temperature and diurnal temperature range and a strong positive correlation with numbers of rainy days during the period of study.


MAUSAM ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 399-408
Author(s):  
A. C. DE

The results of special radiosonde soundings extending upto 1000 ft made on certain selected dates and at certain selected hours during the winter season 1957-58 and pre-monsoon season 1958 over Dum Dum airport are discussed. The results indicated the formation of ducts at certain hours. The variations of the meteorological data with the progress of night are shown in a tabular form. The radarscope observations at the corresponding hours are also discussed. On some occasions the duet heights were as high as 600 ft and prevailed for the whole night. These duets extended horizontally in all directions to about 50 miles. The attenuation produced by appearance of fog/mist over the station and its masking effect on the ground clutters are also discussed. The mass concentration of water droplets on different dates has been calculated and shown in a tabular form.


2020 ◽  
Author(s):  
Yufang Jin ◽  
Bin Chen ◽  
Bruce Lampinen ◽  
Patrick Brown

<p>Agricultural productivity is subject to various stressors, including abiotic and biotic threats, many of which are exacerbated by a changing climate. The productivity of tree crops, such as almond orchards, is particularly complex. Moreover, the State of California has implemented legislatively mandated nitrogen (N) management strategies of all growers statewide to minimize nitrogen losses to the environment, and almond growers must now apply N in accordance with the estimated yield in early spring. To understand and mitigate these threats requires a collection of multi-layer large data sets, and advanced analytics is also critical to integrate these highly heterogeneous datasets to generate insights about the key constraints on the yields at tree and field scales. Here we used machine learning approaches to predict orchard-level yield and examine the determinants of almond yield variation in California’s almond orchards, based on a unique 10-year dataset of field measurements of light interception, remote sensing metrics, and almond yield, along with meteorological data. We found that overall the maximum almond yield was highly dependent on light interception, e.g., with each one percent increase in light interception resulting in an increase of 57.9 lbs/acre in the potential yield. Light interception was highest for mature sites with higher long term mean spring incoming solar radiation, and lowest for younger orchards and when March maximum temperature was lower than 19 <sup>o</sup>C. However, at any given level of light interception, actual yield often falls significantly below full yield potential, driven mostly by tree age, temperature profiles in June and winter, and summer maximum vapor pressure deficit (VPDmax). The full random forest model was found to explain 82% (±1%) of yield variation, with a RMSE of 480±9 lbs/acre. When excluding light interception from the predictors, overall orchard characteristics (such as age, location and tree density) and key meteorological variables could still explain 78% of yield variation. The model analysis also showed that warmer winter conditions often limited mature orchards from reaching maximum yield potential and higher summer VPDmax  significantly limited the yield. Our findings through the machine learning approach improved our understanding of the complex interaction between climate, canopy light interception, and almond nut production. The demonstrated relatively robust predictability of almond yield, driven by “big data”, also provides quantitative information and guidance to make informed orchard nutrient management decisions, allocate resources, determine almond price targets, and improve market planning.</p>


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 425-438
Author(s):  
M. MOHAPATRA

The linear trends in the monthly, seasonal and annual mean maximum temperature, minimum temperature, average temperature, diurnal range of temperature, rainfall, relative humidities at 0830 & 1730 hr IST of Bangalore city and airport have been analysed based on the data for the period from 1960-95. The variation in surface wind over Bangalore during above period has also been studied to find out impact of urbanisation on weather parameters. It is found that Bangalore city is becoming warmer in terms of mean maximum & mean minimum temperatures. Rate of increase is significantly higher over Bangalore city (central observatory) than that over airport during winter months. Similarly the rising trend of average temperature of Bangalore city is higher than of Bangalore airport during October to April being significantly so during winter season. Also the diurnal range of temperature of Bangalore is becoming larger in winter months with the rising trend being higher over Bangalore city than over airport. Even though rainfall does not show any significant trend, the rising trend during monsoon & falling trend during post monsoon season over Bangalore city are higher than that of Bangalore airport. Also though both Bangalore city & airport show maximum rising trend in mean relative humidity at 0830 hr IST during winter, the rate of rise is less over Bangalore city. Similarly though the relative humidity at 1730 hr IST shows decreasing trend during all the seasons, the rate of decrease is less over Bangalore city for all seasons except post monsoon season. The mean maximum, minimum and average temperatures and relative humidities show cyclic variation of their monthly trend coefficients during the year.


2019 ◽  
Vol 14 (2) ◽  
pp. 312-319
Author(s):  
Vaibhav Deoli ◽  
Saroj Rana

The present study is mainly focused on to detection of changing trend in rainfall and temperature for Udaipur district situated in the Rajasthan state of India. The district situated in the western part of India which obtained less rainfall as compared with the average rainfall of India. In the present article, the approach has been tried to analysis to detect rainfall trend, maximum temperature trend and minimum temperature trend for the area. For this daily rainfall data of 39 years (1975 to 2013) add seasonally and the temperature has been calculated by averaging of daily temperature for a period of 39 years. For determining the trend the year has been shared out into four seasons like the winter season, pre-monsoon season, monsoon season and post-monsoon season. To obtained magnitude of trend San’s slope estimator test has been used and for significance in trend Mann-Kendall statistics test has been applied. The results obtained for the study show significantly decreasing rainfall trend for the season winter and season post-monsoon whereas pre-monsoon and monsoon show increasing rainfall trend. The maximum temperature of pre-monsoon and monsoon months shows a significantly increasing trend whereas, in minimum temperature, winter season and pre-monsoon season shows an increasing trend which is significant at 10% level of significance and post-monsoon shows a decreasing trend which is also significant at 10% level of significance.


2018 ◽  
Vol 6 (1) ◽  
pp. 102-106
Author(s):  
Sevak Das ◽  
A. I. Desai

The medium range weather forecast issued from NCMRWF, Noida on rainfall, maximum temperature, minimum temperature and wind speed for the last 18 years (1999-2016) has been verified with observed weather parameters recorded at agrometeorological observatory, Sardarkrushinagar to known its accuracy. The results revealed that the usability of rainfall was higher in pre monsoon, post monsoon and winter seasons. However, during monsoon, the accuracy of rainfall forecast was 78 percent with RMSE value of 15.3 that indicated the lower accuracy. The maximum temperature forecast accuracy was very good varied from 76 to 88% in different seasons. Similarly, minimum temperature forecast was excellent in monsoon season (88%), and poor in winter season (57%). The wind speed forecast was excellent in all the seasons.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
ADITYA NARAYAN

The present investigation deals with the prevalence of infection of cestode, Pseudoinverta oraiensis19 parasitizing Clarias batrachus from Bundelkhand Region (U.P.) India. The studies were recorded from different sampling stations of Bundelkhand region of Uttar Pradesh. For this study 360 fresh water fish, Clarias batrachus were examined. The incidence of infection, monsoon season (17.50%) followed by winter season (20.00%) whereas high in summer season (30.00%).


2020 ◽  
Vol 81 (1) ◽  
Author(s):  
K. N. Raghavendra ◽  
Kumar Arvind ◽  
G. K. Anushree ◽  
Tony Grace

Abstract Background Butterflies are considered as bio-indicators of a healthy and diversified ecosystem. Endosulfan was sprayed indiscriminately in large plantations of Kasaragod district, Kerala which had caused serious threats to the ecosystem. In this study, we surveyed the butterflies for their abundance and diversity in three differentially endosulfan-affected areas viz., Enmakaje—highly affected area, Periye—moderately affected area, Padanakkad—unaffected area, carried out between the end of the monsoon season and the start of the winter season, lasting approximately 100 days. Seven variables viz., butterfly abundance (N), species richness (S), Simpson’s reciprocal index (D), the Shannon–Wiener index (H′), the exponential of the Shannon–Wiener index (expH′), Pielou’s evenness (J) and species evenness (D/S), related to species diversity were estimated, followed by the one-way ANOVA (F = 25.01, p < 0.001) and the Kruskal-Wallis test (H = 22.59, p < 0.001). Results A population of three different butterfly assemblages comprised of 2300 butterflies which represented 61 species were encountered. Our results showed that Enmakaje displayed significantly lower butterfly diversity and abundance, compared to the other two communities. Conclusion So far, this is the first study concerning the effect of endosulfan on the biodiversity of butterfly in the affected areas of Kasaragod, Kerala, India. This study may present an indirect assessment of the persisting effects of endosulfan in the affected areas, suggesting its long-term effects on the ecosystem.


Sign in / Sign up

Export Citation Format

Share Document