Surface rupture of the Greendale Fault during the Darfield (Canterbury) earthquake, New Zealand

Author(s):  
M. Quigley ◽  
R. Van Dissen ◽  
P. Villamor ◽  
N. Litchfield ◽  
D. Barrell ◽  
...  

The Mw 7.1 Darfield (Canterbury) earthquake of 4 September 2010 (NZST) was the first earthquake in New Zealand to produce ground-surface fault rupture since the 1987 Edgecumbe earthquake. Surface rupture of the previously unrecognised Greendale Fault during the Darfield earthquake extends for at least 29.5 km and comprises an en echelon series of east-west striking, left-stepping traces. Displacement is predominantly dextral strike-slip, averaging ~2.5 m, with maxima of ~5 m along the central part of the rupture. Maximum vertical displacement is ~1.5 m, but generally < 0.75 m. The south side of the fault has been uplifted relative to the north for ~80% of the rupture length, except at the eastern end where the north side is up. The zone of surface rupture deformation ranges in width from ~30 to 300 m, and comprises discrete shears, localised bulges and, primarily, horizontal dextral flexure. At least a dozen buildings were affected by surface rupture, but none collapsed, largely because most of the buildings were relatively flexible and robust timber-framed structures and because deformation was distributed over tens to hundreds of metres width. Many linear features, such as roads, fences, power lines, and irrigation ditches were offset or deformed by fault rupture, providing markers for accurate determinations of displacement.

2011 ◽  
Vol 44 (3) ◽  
pp. 283-291 ◽  
Author(s):  
D.J.A. Barrell ◽  
N.J. Litchfield ◽  
D.B. Townsend ◽  
M. Quigley ◽  
R.J. Van Dissen ◽  
...  

2021 ◽  
Author(s):  
◽  
Brian Sutton-Smith

<p>In the Spring of 1948 while teaching at a primary school, I observed a small group of girls playing a game called "Tip the Finger". During the game one of the players chanted the following rhyme: "Draw a snake upon your back And this is the way it went North, South, East, West, Who tipped your finger?" I recognized immediately and with some surprise that this rhyme contained elements which were not invented by the children and were probably of some antiquity. I knew, for example, though only in a vague and unlearned manner, that the four pattern of the North, South, East and West and the Snake symbolism were recurrent motifs in mythology and folklore. I was aware also that there did not exits any specialized attempt to explain the part that games of this nature played in the lives of the players.</p>


1989 ◽  
Vol 79 (2) ◽  
pp. 252-281
Author(s):  
R. V. Sharp ◽  
K. E. Budding ◽  
J. Boatwright ◽  
M. J. Ader ◽  
M. G. Bonilla ◽  
...  

Abstract The M 6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9 km; the maximum observed surface slip, 12.5 cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M 6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. Surface rupture associated with the second event occurred along three strands of the zone, here named North and South strands of the Superstition Hills fault and the Wienert fault, for 27 km southeastward from the epicenter. In contrast to the left-lateral faulting, which remained unchanged throughout the period of investigation, the right-lateral movement on the Superstition hills fault zone continued to increase with time, a behavior that was similar to other recent historical surface ruptures on northwest-trending faults in the Imperial Valley region. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. Data for each of the 49 sites were used to compute longitudinal displacement profiles for 1 day and to estimate the final displacement that measured slips will approach asymptotically several years after the earthquakes. The maximum right-lateral slip at 1 day was about 50 cm near the south-central part of the North strand of Superstition Hills fault, and the predicted maximum final displacement is probably about 112 cm at Imler Road near the center of the South strand of the Superstition Hills fault. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is about 54 cm. The average left-lateral slip for the conjugate faults trending northeastward is about 23 cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4 km. The southern half of this fault, south of New River, expressed only vertical displacement on a sinuous trace. The maximum vertical slip by the end of the observation period there was about 25 cm, but its growth had not ceased. Photolineaments southeast of the end of new surface rupture suggest continuation of the Superstition Hills fault zone in farmland toward Mexico.


Author(s):  
Robert M. Langridge ◽  
Pilar Villamor ◽  
Jamie D. Howarth ◽  
William F. Ries ◽  
Kate J. Clark ◽  
...  

ABSTRACT The Alpine fault is a high slip-rate plate boundary fault that poses a significant seismic hazard to southern and central New Zealand. To date, the strongest paleoseismic evidence for the onshore southern and central sections indicates that the fault typically ruptures during very large (Mw≥7.7) to great “full-section” earthquakes. Three paleoseismic trenches excavated at the northeastern end of its central section at the Toaroha River (Staples site) provide new insights into its surface-rupture behavior. Paleoseismic ruptures in each trench have been dated using the best-ranked radiocarbon dating fractions, and stratigraphically and temporally correlated between each trench. The preferred timings of the four most recent earthquakes are 1813–1848, 1673–1792, 1250–1580, and ≥1084–1276 C.E. (95% confidence intervals using OxCal 4.4). These surface-rupture dates correlate well with reinterpreted timings of paleoearthquakes from previous trenches excavated nearby and with the timing of shaking-triggered turbidites in lakes along the central section of the Alpine fault. Results from these trenches indicate the most recent rupture event (MRE) in this area postdates the great 1717 C.E. Alpine fault rupture (the most recent full-section rupture of the southern and central sections). This MRE probably occurred within the early nineteenth century and is reconciled as either: (a) a “partial-section” rupture of the central section; (b) a northern section rupture that continued to the southwest; or (c) triggered slip from a Hope-Kelly fault rupture at the southwestern end of the Marlborough fault system (MFS). Although, no single scenario is currently favored, our results indicate that the behavior of the Alpine fault is more complex in the north, as the plate boundary transitions into the MFS. An important outcome is that sites or towns near fault intersections and section ends may experience strong ground motions more frequently due to locally shorter rupture recurrence intervals.


Author(s):  
Jiashun Yu ◽  
Philip Yong ◽  
Stuart Read ◽  
P. Brabhaharan ◽  
Meng Foon

On 12 May 2008 at 2.28 pm Beijing Time, an Ms 8.0 earthquake occurred in the Wenchuan County of Sichuan province, China. The associated fault ruptured over 240 km on the ground surface. The resulting damage was very severe and widespread, with casualties of almost 70,000, another 18,000 missing and 370,000 injured. The New Zealand Society for Earthquake Engineering reconnaissance team observed the effects and the recovery from this massive earthquake. The team studied the damages caused to the natural and the built environment due to fault rupture, seismic shaking, huge landslides and rockfalls. Maximum shaking intensity of MM XI significantly exceeded design intensity of MM VII for the area. Earthquake induced landslides had a major and catastrophic impact on development and infrastructure in this earthquake. Site selection was demonstrated to be critical. Brittle or non-ductile and irregular buildings performed very poorly especially in a seismic overload situation. Well engineered structures and dams performed well. Lifeline facilities were severely damaged, which resulted in interruptions to key transportation routes, inhibited rescue and recovery operations.


2021 ◽  
Author(s):  
◽  
Jesse Kearse

<p>During the 2016, Mw 7.8 Kaikōura earthquake the Kekerengu fault ruptured the ground surface producing a maximum of ~12 m of net displacement (dextral-slip with minor reverse- slip), one of the largest five co-seismic surface rupture displacements so far observed globally. This thesis presents the first combined onshore to offshore dataset of co-seismic ground-surface and vertical seabed displacements along a near-continuous ~83 km long strike-slip dominated earthquake surface rupture of large slip magnitude. Onshore on the Kekerengu, Jordan Thrust, Upper Kowhai, and Manakau faults, we measured the displacement of 117 cultural and natural markers in the field and using airborne LiDAR data. Offshore on the dextral-reverse Needles fault, multibeam bathymetric and high-resolution seismic reflection data image a throw of the seabed of up to 3.5±0.2 m. Mean net slip on the total ~83 km rupture was 5.5±1 m, this is an unusually large mean slip for the rupture length compared to global strike-slip surface ruptures. Surveyed linear features that extend across the entire surface rupture zone show that it varies in width from 13 to 122 m. These cultural features also reveal the across-strike distribution of lateral displacement, 80% of which is, on average, concentrated within the central 43% of the rupture zone. Combining the near-field measurements of fault offset with published, far-field InSAR, continuous GPS, and coastal deformation data, suggests partitioning of oblique plate convergence, with a significant portion of co-seismic contractional deformation (and uplift) being accommodated off-fault in the hanging-wall crust to the northwest of the main rupturing faults.  This thesis also documents in detail the onshore extent of surface fault rupture on the Kekerengu, Jordan Thrust, Upper Kowhai and Manakau faults. I present large-scale maps (up to 1:3,000) and documentary field photographs of this 53 km-long onshore surface rupture zone utilizing field data, post-earthquake LiDAR-derived Digital Elevation Models (DEMs), and post-earthquake ortho-rectified aerial photography. Ground deformation data is most detailed near the Marlborough coast where the 2016 rupture trace is well-exposed on agricultural grassland on the Kekerengu fault. In the southwest, where surface fault rupture traversed the alpine slopes of the Seaward Kaikoura ranges, fault mapping relied heavily on the LiDAR-derived DEMs.   At 24 sites along the Kekerengu fault, I document co-seismic wear striae that were formed during the earthquake and were preserved on free face fault exposures. Nearly all of these striae were distinctly curved along their length, demonstrating that the direction of near-surface fault slip changed with time during rupture of the Kekerengu fault. Co-seismic displacement on the Kekerengu fault initiated as oblique-dextral (mainly dextral-reverse), and subsequently rotated to become nearly-pure dextral slip. These slip trajectories agree with directions of net displacements derived from offset linear features at nearby sites. Temporal rotation of the slip direction may suggest a state of low shear stress on the Kekerengu fault before the earthquake, and a near-complete reduction in stress during the earthquake, as has been inferred for other historic earthquakes that show evidence for changing slip direction with time.</p>


Author(s):  
Haibin Yang ◽  
Mark Quigley ◽  
Tamarah King

Earthquake ground surface ruptures provide insights into faulting mechanics and inform seismic hazard analyses. We analyze surface ruptures for 11 historical (1968−2018) moment magnitude (Mw) 4.7−6.6 reverse earthquakes in Australia using statistical techniques and compare their characteristics with magnetic, gravity, and stress trajectory data sets. Of the total combined (summative) length of all surface ruptures (∼148 km), 133 km (90%) to 145 km (98%) align with the geophysical structure in the host basement rocks. Surface rupture length (SRL), maximum displacement (MD), and probability of surface rupture at a specified Mw are high compared with equivalent Mw earthquakes globally. This is attributed to (1) a steep cratonic crustal strength gradient at shallow depths, promoting shallow hypocenters (∼1−6 km) and limiting downdip rupture widths (∼1−8.5 km), and (2) favorably aligned crustal anisotropies (e.g., bedrock foliations, faults, fault intersections) that enhanced lateral rupture propagation and/or surface displacements. Combined (modeled and observed) MDs are in the middle third of the SRL with 68% probability and either the ≤33rd or ≥66th percentiles of SRL with 16% probability. MD occurrs proximate to or directly within zones of enhanced fault geometric complexity (as evidenced from surface ruptures) in 8 of 11 earthquakes (73%). MD is approximated by 3.3 ± 1.6 (1σ) × AD (average displacement). S-transform analyses indicates that high-frequency slip maxima also coincide with fault geometric complexities, consistent with stress amplifications and enhanced slip variability due to geometric and kinematic interactions with neighboring faults. Rupture slip taper angles exhibite large variations (−90% to +380% with respect to the mean value) toward rupture termini and are steepest where ruptures terminate at obliquely oriented magnetic lineaments and/or lithology changes. Incremental slip approximates AD between the 10th and 90th percentiles of the SRL. The average static stress drop of the studied earthquakes is 4.8 ± 2.8 MPa. A surface rupture classification scheme for cratonic stable regions is presented to describe the prevailing characteristics of intraplate earthquakes across diverse crustal structural-geophysical settings. New scaling relationships and suggestions for logic tree weights are provided to enhance probabilistic fault displacement hazard analyses for bedrock-dominated intraplate continental regions.


2021 ◽  
Author(s):  
◽  
Brian Sutton-Smith

<p>In the Spring of 1948 while teaching at a primary school, I observed a small group of girls playing a game called "Tip the Finger". During the game one of the players chanted the following rhyme: "Draw a snake upon your back And this is the way it went North, South, East, West, Who tipped your finger?" I recognized immediately and with some surprise that this rhyme contained elements which were not invented by the children and were probably of some antiquity. I knew, for example, though only in a vague and unlearned manner, that the four pattern of the North, South, East and West and the Snake symbolism were recurrent motifs in mythology and folklore. I was aware also that there did not exits any specialized attempt to explain the part that games of this nature played in the lives of the players.</p>


Author(s):  
Elizabeth R. Schermer ◽  
Colin B. Amos ◽  
William Cody Duckworth ◽  
Alan R. Nelson ◽  
Stephen Angster ◽  
...  

ABSTRACT Holocene crustal faulting in the northern Olympic Peninsula of Washington State manifests in a zone of west-northwest-striking crustal faults herein named the North Olympic fault zone, which extends for ∼80  km along strike and includes the Lake Creek–Boundary Creek fault to the east and the Sadie Creek fault and newly discovered scarps to the west. This study focuses on the Sadie Creek fault, which extends for &gt;14  km west-northwest from Lake Crescent. Airborne light detection and ranging (lidar) imagery reveals the trace of the Sadie Creek fault and offset postglacial landforms showing a history of Holocene surface-rupturing earthquakes dominated by dextral displacement along a steeply dipping fault zone. Paleoseismic trenches at two sites on the Sadie Creek fault reveal till and outwash overlain by progressively buried forest and wetland soils developed on scarp-derived colluvial wedges. Trench exposures of complex faulting with subhorizontal slickenlines indicate dextral displacement with lesser dip slip. Correlation of broadly constrained time intervals for earthquakes at the Sadie Creek sites and those to the east along the Lake Creek–Boundary Creek fault is consistent with rupture of much of the length of the North Olympic fault zone three to four times: at about 11, 7, 3, and 1 ka, with a shorter rupture at about 8.5 ka. Dated ruptures from trenches only partially coincide with coseismic landslides and megaturbidites in Lake Crescent, indicating that some earthquakes did not trigger megaturbidites, and some turbidites were unrelated to local fault rupture. Landform mapping suggests single-event dextral displacement of 4±1  m on the Sadie Creek fault. Inferred maximum rupture length and single-event slip imply earthquake magnitudes Mw 7.0–7.5. Dextral slip rates of 1.3–2.3  mm/yr and the ∼11,000  yr slip history suggest that the North Olympic fault zone is a prominent contributor to permanent strain in the northern Cascadia fore-arc.


2021 ◽  
Vol 44 (2) ◽  
pp. 1-13
Author(s):  
Ali Nabizadeh ◽  
Alireza Seghateh Mojtahedi

Earthquakes of large magnitudes cause fault ruptures propagation in soil layers and lead to interactions with subsurface and surface structures. The emergence of fault ruptures on or adjacent to the position of existing tunnels cause significant damage to the tunnels. The objective of this paper is to study the interaction of an embedded tunnel within a soil layer and the soil deformations imposed upon by normal faulting. A centrifuge modeling under 80-g acceleration was conducted to investigate the rupture propagation pattern for different relative tunnel positions. Compared with the free field condition, due to tunnel and normal fault rupture interactions, focused on soil relative density and tunnel rigidity in this research, found that they can dramatically modify the rupture path depending on the tunnel position relative to the fault tip. The tunnel diverts the rupture path to its sides. This study presents the normal fault-tunnel interaction with the tunnel axis parallel to the normal fault line, to examine the changes that take place in fault rupture plane locations, the vertical displacement of the ground surface with tunnel presence and the effect of tunnel rigidity and soil density on fault tunnel interaction.


Sign in / Sign up

Export Citation Format

Share Document