scholarly journals Effect of Applying Organic Amendments and Chickpea Integration on Soil Chemical Properties in Different Cropping Systems in Central Kenya

2018 ◽  
Vol 10 (12) ◽  
pp. 215
Author(s):  
O. H. Ndukhu ◽  
G. R. Wahome ◽  
H. H. Jensen

A study was carried out to determine the effect of applying farm yard manure (FYM) and Minjingu rock phosphate (MRP) on soil available nitrogen, phosphorus and organic carbon. The study involved field experiments under varying precipitation pattern, soil fertility levels and cropping systems over four growth seasons. The experimental design was a randomized complete block (RCBD) with four replications in a split plot arrangement where the main plots were the three cropping systems; monocropping, intercropping and crop rotation and the split plots were FYM and MRP and sampling done at crop physiological maturity. Soil pH, N, P K and C increased in the different treatments in the following order control < MRP < FYM in the three cropping systems across the four growing seasons at both sites. In maize under rotation with chickpea control had; 0.281% N, 2.82% C and 10.68 ppm P. FYM; 0.554% N, 4.41% C and18.24 ppm P. MRP; 0.45% N, 3.6% C and 41.08 ppm P. Maize chickpea intercrop control; 0.389% N, 3.192% C and 13.4 ppm P. FYM; 0.531% N, 4.98% C and 41.02 ppm P. MRP; 0.49% N, 4.08% C and 50.9 ppm P. Soil under maize monocrop exhibited; control; 0.2% N, 2.59% C and11.26 ppm P. FYM; 0.416% N, 3.83% C and 18.01 ppm P. MRP; 0.28% N, 3.13% C and 26.1ppm P. Almost a similar trend was observed in maize and tomato plots at both sites in all the growing seasons. Thus it can be deduced that, FYM and MRP application and legume integration in cropping systems improves soil fertility.

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Raphiou Maliki ◽  
Brice Sinsin ◽  
Anne Floquet ◽  
Denis Cornet ◽  
Eric Malezieux ◽  
...  

Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow ofAndropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation,Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-26
Author(s):  
NTANGMO TSAFACK Honorine ◽  

Soil fertility indices are well documented as they are directly related to land use and productivity. However, the effect of continuous intensive cultivation on the evolution of soil fertility is still poorly documented. The aim of this study was thus to assess the effect of continuous intensive cultivation on the chemical and microbiological properties of Oxic Dystrandept soils in the Western Highlands of Cameroon. Composite soil samples were taken between 0-15 cm depths on farmlands that have been subjected to continuous intensive cultivation for one, five and ten years meanwhile samples from plots that have never been cultivated served as control. The main results revealed that the ammonium contents dropped abruptly (86%-wt) from the first year of cultivation. The organic carbon (OC) content decreased from 1.81 ± 0.14 %-dm (in control) to 1.69 ± 0.09 % after one year, 1.66 ± 0.10 % after 5 years and 1.58 ± 0.07 % after 10 years. Compared to the control, available phosphorus (P) showed a 13 %-wt drop after one year, 46 % after 5 years and 85 % after 10 years. Dehydrogenase activity showed a 42 % decrease after one year, 50 % after five years and 73 % after 10 years. The other parameters were not significantly different (P<0.05) amongst treatments. Decline of soil productivity was undoubtedly related to the decrease of OC, P, microbial activity and ammonium with continuous intensive cultivation. Thus, management strategies for improved crop production should include selection suitable cropping systems and chemical methods. Keywords: Continuous intensive cultivation, enzymatic activities, soil chemical properties, Oxic Dystrandept, Cameroon western highland


Soil Research ◽  
2015 ◽  
Vol 53 (2) ◽  
pp. 190 ◽  
Author(s):  
M. Tatzber ◽  
N. Schlatter ◽  
A. Baumgarten ◽  
G. Dersch ◽  
R. Körner ◽  
...  

Recent studies show that a labile soil carbon (C) fraction determined with potassium permanganate (KMnO4) reflects the type of soil management. The present study combines the method for determining the active C (AC) pool with an alternative titration of the 0.02 m KMnO4 solution with sodium oxalate (Na2C2O4) for routine laboratory analyses. Three long-term field experiments investigated: (i) different cropping systems and 14C-labelled organic amendments, (ii) three different tillage systems, and (iii) the application of four different kinds of compost. The results showed the depletion of AC in the permanent bare-fallow system of the 14C-labelled field experiment. When calculating the ratio AC/total organic C (TOC), the depletion of the AC/TOC curve reflected a priming effect, in accord with previous work. We obtained significant positive correlations of AC with TOC, total nitrogen (Nt), humic acid-C and remaining 14C-labelled material. The AC in the tillage systems experiment was significantly (P < 0.05) different between all three tillage treatments at 0–10 cm depth, and the ratio AC/TOC also revealed a significant difference between minimum and conventional tillage treatments at 10–20 cm. For the compost field experiment, significant differences occurred between plots fertilised solely with N and plots receiving organic amendments. The AC/TOC ratio of the sewage sludge amendment was significantly lower than in all other systems. Correlations of AC with TOC for all samples of the different long-term field experiments revealed different behaviours in different soil types. The correlations of AC with Nt showed higher coefficients than with TOC. The applied methodology has a potential for sensitive and reliable detections of differences in soil organic matter characteristics.


2001 ◽  
pp. 34-39
Author(s):  
János Lazányi

The crop rotation experiment, established by Vilmos Westsik in 1929, is the best known and most remarkable example of continuous production in Hungary. It is still used to study the effects of organic manure treatment, develop models and predict the likely effects of different cropping systems on soil properties and crop yields. Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of fertilisers, green, straw and farmyard manure. The experiment also provides a resource of yield, plant and soil data sets for scientific research into the soil and plant processes which control soil fertility, and into the sustainability of production without environmental deterioration. The maintenance of Westsik’s crop rotation experiment can be used to illustrate the value of long-term field experiments.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Kaitlyn E. Trepanier ◽  
Laura Manchola-Rojas ◽  
Bradley D. Pinno

Buried wood is an important but understudied component of reclamation soils. We examined the impacts of buried wood amounts and species on the growth of the common reclamation tree species trembling aspen (Populus tremuloides). In a greenhouse study, aspen seedlings were planted into four soil types, upland derived fine forest floor-mineral mix (fFFMM), coarse forest floor-mineral mix (cFFMM), and lowland derived peat and peat-mineral mix (PMM), that were mixed with either aspen or pine wood shavings at four concentrations (0%, 10%, 20% and 50% of total volume). Height and diameter growth, chlorophyll concentration, and leaf and stem biomass were measured. Soil nutrients and chemical properties were obtained from a parallel study. Buried wood primarily represents an input of carbon to the soil, increasing the C:N ratio, reducing the soil available nitrogen and potentially reducing plant growth. Soil type had the largest impact on aspen growth with fFFMM = peat > PMM > cFFMM. Buried wood type, i.e., aspen or pine, did not have an impact on aspen development, but the amount of buried wood did. In particular, there was an interaction between wood amount and soil type with a large reduction in aspen growth with wood additions of 10% and above on the more productive soils, but no reduction on the less productive soils.


2017 ◽  
Vol 07 (05) ◽  
pp. 87-100 ◽  
Author(s):  
Md. Farid Ahammed Anik ◽  
Md. Mizanur Rahman ◽  
G. K. M. Mustafizur Rahman ◽  
Md. Khairul Alam ◽  
Mahammad Shariful Islam ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 636-641
Author(s):  
Chengyuan Hao ◽  
Hebing Zhang ◽  
Jian Zhou

The spatial variation of soil physical and chemical properties in Funiu Mountain was studied to provide references for identifying soil spatial variation mechanism in bordering land of China warm temperate zone and northern subtropical region. Using vertical gradient sampling and traditional statistics method, the soil samples at the altitude from 1640 m to 1870 m were collected to compare physical and chemical properties between south and north slopes of the Funiu Mountain. The results showed that soil pH, soil organic matter and soil total nitrogen were remarkably correlated with altitude change, but soil electrical conductivity, soil available nitrogen, available phosphors, available potassium, and total potassium were not related to altitude. With the increase of altitude, soil pH and total nitrogen increased, but soil organic matter decreased. Compared with the soil properties of northern slope in Funiu Mountain, soil acidity, electrical conductivity, and available nitrogen were higher in southern slope. Especially, the soil available nitrogen was much higher than the mean value observed in northern slope samples. The contents of soil organic matter, available phosphorus, available potassium, total nitrogen, and total potassium showed no striking difference on between southern and northern slopes. In conclusion, both altitude and slope direction significantly influenced spatial variation of soil properties in Funiu Mountain. It added to the boundary effect of Qinling Mountains, and revealled the interaction mechanism of the environmental elements such as land-climate-soil-ecosystem in Funiu Mountain.


2021 ◽  
Author(s):  
Wangya Han ◽  
Li Chen ◽  
Xukun Su ◽  
Dan Liu ◽  
Tiantian Jin ◽  
...  

Abstract Background and aims Alpine grassland on the Qinghai-Tibetan Plateau (QTP) is sensitive and fragile, and it is subject to serious degradation. It is essential to determine the effects of soil parameters on plant species to explain grassland degradation. Methods We classified plant communities into six types based on hierarchical clustering. Then we analyzed the effects of soil physico-chemical properties on plant species composition and diversity by canonical ordination and spatial regression from an elevation perspective. Results Elevation class had significant effects on soil moisture content, soil pH, and soil available nitrogen content. The primary soil parameter affecting plant species composition and diversity in alpine grassland was soil available nitrogen content. The effect of soil available nitrogen content on plant species richness varied at different elevations. For Gramineae plants (G), plant species richness declined with the increase in soil available nitrogen content at low elevation, but rose at middle elevation. Soil available nitrogen content had a more significant limiting effect on species richness at high elevation. Conclusion Analyzing the relationship between plant species and soil physico-chemical properties increases our understanding of grassland degradation, and will improve grassland restoration programs and responses to climate change.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Steven L. McGeehan

Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb) plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
D. V. Bhagat ◽  
S. N. Gawade ◽  
R. C. Sharma ◽  
A. P. Kale ◽  
J. A. Shaikh ◽  
...  

Field experiments were undertaken on sandy soils with three cropping systems at Giridih, Jharkhand, India for two years during 2012-2014. The experiments were executed in split plot design by assigning water soluble phosphorus (WSP) fertilizers in main-plot and recommended dose of phosphorus (RDP) in sub-plot with three replications. The maximum economical yield of rice (4705 kg/ha), baby corn (842 kg/ha) and Chickpea (920 kg/ha) were recorded with the application of 30% WSP. The maximum economical yield of successive crops - wheat (3185 kg/ha), mustard (1720 kg/ha) and groundnut (1578 kg/ha) were recorded with the application of 30% WSP and 100% RDP treatment. Almost similar trends were noticed in terms of by-product yield, nutrient uptake and residual soil fertility status.  All the levels of WSP (30% - 89%) in complex fertilizers were found to be equally effective for grain yield, straw yield, nutrient uptake, and residual soil fertility.


Sign in / Sign up

Export Citation Format

Share Document