Tribological properties and metallurgical characteristics of different diffusion layers formed on steel

2020 ◽  
Vol 24 (4) ◽  
pp. 15-18
Author(s):  
Jan Senatorski ◽  
Jan Tacikowski ◽  
Paweł Mączyński

The article presents results of investigations of wear resistance by friction, employing the “3 cylinder-cone” method, of selected structural and tool steels, subjected to given thermo-chemical treatment, i.e. boriding, carburizing, nitriding, chromizing and titanizing. It was observed that a proportionality exists between their wear resistance and the value of surface unit loading. Moreover, the friction-wear properties of these layers exhibited certain differences, dependent on their microstructure and chemistry.

Tribologia ◽  
2016 ◽  
Vol 267 (3) ◽  
pp. 161-169
Author(s):  
Jan SENATORSKI ◽  
Jan TACIKOWSKI ◽  
Paweł MĄCZYŃSKI

The article presents the results of investigations of wear resistance by friction, employing the “3 cylinder-cone” method, of selected structural and tool steels, subjected to given thermo-chemical treatment, i.e. boriding, carburizing, nitriding and chromizing. It was observed that a proportionality exists between their wear resistance and the value of surface unit loading. Moreover, the friction-wear properties of these layers exhibited certain differences, dependent on their microstructure and chemistry.


Tribologia ◽  
2018 ◽  
Vol 273 (3) ◽  
pp. 171-178 ◽  
Author(s):  
Jan SENATORSKI ◽  
Jan TACIKOWSKI ◽  
Paweł MĄCZYŃSKI

The article presents results of investigations of wear resistance by friction, employing the “3 cylinder – cone” method, of selected structural steels subjected to given thermo-chemical treatment, i.e. nitriding, carburizing, and precipitation hardening after nitriding. The investigated steels were C45, 21NiCrMo2, 18HGT, and 41Cr4. These materials, after thermo-chemical treatment undergo metallurgical characteristics of diffusion layers formed on steel. It was observed that proportionality exists between their wear resistance and the value of surface unit loading. Moreover, the friction – wear properties of these layers exhibited certain differences, depending on their microstructure and chemistry.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


2020 ◽  
Vol 12 (6) ◽  
pp. 806-809
Author(s):  
Ghanshyam Dass ◽  
Anil Kumar ◽  
Manoj Kumar Kushwaha

Friction and wear properties of NAAO templates were calculated in affinity to pore dimensions and applied load. Homogeneously uniformly decorative synthesized by anodization of nanoporous aluminium oxide films having 65–95 μm thick and pores of 143.5, 105, 84.4 nm diameter. A tribological competency of the material checked out with loads and 250 rpm on the pin on a dry wear disc. The anodized NAAO sample has wear resistance increased by 25% as compared to the non-anodized sample. The pore density little bit impressed the frictional characters of NAAO template. We counsel that these course templates basically contribute to the reduction of friction distrait the pore structure by proving energy-dispersive spectroscopy (EDS).


Tribologia ◽  
2018 ◽  
Vol 281 (5) ◽  
pp. 53-64
Author(s):  
Roksana MUZYKA ◽  
Piotr DUDA ◽  
Zbigniew ROBAK ◽  
Sławomir KAPTACZ ◽  
Sabina DREWNIAK

Cu-C composites are materials used for the production of brushes, contacts, and pressing shoes for electric machines due to their mechanical and wear properties. These characteristics include good thermal and electrical conductivity, a low coefficient of friction, and lubricity under varying operating conditions. Currently, graphite and copper nanopowder based materials are used as a metal-carbon material in different ratios of these components. Graphite content in this kind of material has a positive effect on the smaller consumption of, e.g., rings and commutators. In contrast, a material without graphite content is used at high current densities. The examples of such machines are a DC motor starter or generators for electrolysis characterized by large current and low voltage. The present study tested the effect of graphene oxide (rGO) content on tribological properties in contact with steel in Cu-C composites. Tests were conducted on a ball-on-disk apparatus in conditions of dry friction. Disk wear and surface geometrical structure parameters (SGP) of the samples after tribological tests were determined on the basis of measurements made on the Talysurf.3D contact profilometer from Taylor Hobson. Damage mechanisms were identified and their relationships with structural characteristics were deducted. The hardness of Cu-C materials was higher than in copper. Cu-C based materials produce a better improvement of wear resistance, while the wear resistance of the graphene oxide based composites also decreased.


2017 ◽  
Vol 36 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Ilhan Çelik

AbstractTitanium and its alloys are widely used in many fields, including aerospace and the chemical and biomedical industries. This is due to their mechanical properties, excellent corrosion resistance, and biocompatibility although they do have poor wear resistance. In this study, a duplex layer was successfully formed on the commercially pure titanium surface by duplex treatments (plasma nitriding and physical vapor deposition (PVD)). In the initial treatment, plasma nitriding was performed on the pure titanium samples and in the second treatment, the nitrided samples were coated with CrN by PVD. The friction and wear properties of the duplex-treated samples were investigated for tribological applications. Surface morphology and microstructure of the duplex-treated samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, the tribological properties were investigated using pin-on-disc tribometer. A compound layer composed of ε-Ti2N and δ-TiN phases and a diffusion layer formed under the compound layer were obtained on the surface of pure titanium after the nitriding treatments. CrN coated on the nitrided surface provided an increase in the surface hardness and in the wear resistance.


Alloy Digest ◽  
1993 ◽  
Vol 42 (6) ◽  

Abstract For demanding applications in industry, alloys have been custom crafted by powder metallurgy as systems for wear or wear/corrosion resistance. CPM 10V and 9V tool steels provide excellent wear resistance, and CPM 440 V, MPL-1, and CPM-M4 are used when superior corrosion resistance and excellent wear resistance are required This datasheet provides information on composition and hardness as well as fracture toughness. It also includes information on corrosion and wear resistance. Filing Code: TS-517. Producer or source: Crucible Materials Corporation.


Alloy Digest ◽  
2006 ◽  
Vol 55 (12) ◽  

Abstract TLS A6 is a medium-alloy air-hardening tool steel that is known for its through hardening at the low temperatures typically used with oil-hardening tool steels. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on wear resistance as well as heat treating and machining. Filing Code: TS-638. Producer or source: Timken Latrobe Steel.


Alloy Digest ◽  
1997 ◽  
Vol 46 (8) ◽  

Abstract CPM 3V offers impact toughness (Charpy C notch) approaching the shock-resistant tool steels, but with greater wear resistance. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on wear resistance as well as heat treating and machining. Filing Code: TS-558. Producer or source: Crucible Materials Corporation.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 989
Author(s):  
Donghyun Lee ◽  
Junghwan Kim ◽  
Sang-Kwan Lee ◽  
Yangdo Kim ◽  
Sang-Bok Lee ◽  
...  

In this study, to evaluate the effect of boron carbide (B4C) addition on the wear performance of aluminum (Al), Al6061 and 5, 10, and 20 vol.% B4C/Al6061 composites were manufactured using the stir casting and hot rolling processes. B4C particles were randomly dispersed during the stir casting process; then, B4C particles were arranged in the rolling direction using a hot rolling process to further improve the B4C dispersion and wear resistance of the composites. Furthermore, a continuous interfacial layer between B4C and the Al6061 matrix was generated by diffusion of titanium (Ti) and chromium (Cr) atoms contained in the Al6061 alloy. Wear depth and width of the composites decreased with increasing B4C content. Furthermore, with B4C addition, coefficient of friction (COF) improved as compared with that of Al6061. The results indicate that interface-controlled, well-aligned B4C particles in the friction direction can effectively increase the wear properties of Al alloys and improve their hardness.


Sign in / Sign up

Export Citation Format

Share Document