TRIBOLOGICAL PROPERTIES OF GRAPHENE OXIDE-METAL-CARBON COMPOSITES

Tribologia ◽  
2018 ◽  
Vol 281 (5) ◽  
pp. 53-64
Author(s):  
Roksana MUZYKA ◽  
Piotr DUDA ◽  
Zbigniew ROBAK ◽  
Sławomir KAPTACZ ◽  
Sabina DREWNIAK

Cu-C composites are materials used for the production of brushes, contacts, and pressing shoes for electric machines due to their mechanical and wear properties. These characteristics include good thermal and electrical conductivity, a low coefficient of friction, and lubricity under varying operating conditions. Currently, graphite and copper nanopowder based materials are used as a metal-carbon material in different ratios of these components. Graphite content in this kind of material has a positive effect on the smaller consumption of, e.g., rings and commutators. In contrast, a material without graphite content is used at high current densities. The examples of such machines are a DC motor starter or generators for electrolysis characterized by large current and low voltage. The present study tested the effect of graphene oxide (rGO) content on tribological properties in contact with steel in Cu-C composites. Tests were conducted on a ball-on-disk apparatus in conditions of dry friction. Disk wear and surface geometrical structure parameters (SGP) of the samples after tribological tests were determined on the basis of measurements made on the Talysurf.3D contact profilometer from Taylor Hobson. Damage mechanisms were identified and their relationships with structural characteristics were deducted. The hardness of Cu-C materials was higher than in copper. Cu-C based materials produce a better improvement of wear resistance, while the wear resistance of the graphene oxide based composites also decreased.

2016 ◽  
Vol 61 (2) ◽  
pp. 863-868 ◽  
Author(s):  
P. Duda ◽  
R. Muzyka ◽  
Z. Robak ◽  
S. Kaptacz

Abstract Due to their characteristics, sintered Cu-C composites are materials used in electrical equipment. These characteristics include high electrical conductivity, thermal conductivity and excellent resistance to abrasion. Currently, graphite nanopowder is used successfully as a carbon material. Metal-graphite, which is created on its basis, exists in different proportions of graphite to metal. A larger graphite content has a positive effect on smaller wear of commutators and rings. In contrast, a material with a higher copper content is used at high current densities. An example of such machines is a DC motor starter characterized by low voltage and large current. Tribological properties of Cu-C composites depend on the form of carbon they include. Owing to the capability to manufacture graphene, it has become possible to produce composites with its content. The present study tested the effect of a graphene oxide content on tribological properties in contact with steel. Tests were conducted on a ball-on-disk apparatus in conditions of dry friction. Microscopic observation was performed on the Hitachi SU70 field emission electron microscope. EDS analyses were performed using the Thermo Scientific X-ray Microanalysis system. Disk wear and surface geometrical structure parameters (SGP) of the samples after tribological tests were determined on the basis of measurements made on the Talysurf 3D contact profilometer from Taylor Hobson.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 75 ◽  
Author(s):  
Jerzy Jozwik ◽  
Krzysztof Dziedzic ◽  
Marcin Barszcz ◽  
Mykhaylo Pashechko

Phenomena occurring in the contact area between two mating bodies are characterised by high complexity and variability. Comparisons are usually made between parameters such as the coefficient of friction, friction force, wear and temperature in relation to time and friction path. Their correct measurement enables the proper evaluation of tribological properties of materials used in the friction pair. This paper concerns the measurements of basic tribological parameters in the friction of selected polymer composites. Knowing the tribological properties of these composite materials, it will be possible to create proper operating conditions for kinematic friction pairs. This study investigated the coefficients of friction, friction force and temperatures of six polymer composites: cast polyamide PA6 G with oil, PA6 G with MoS2, polyoxymethylene POM with aluminium, polyethylene terephthalate PET with polytetrafluoroethylene PTFE, PTFE with bronze, and PTFE with graphite. The friction surface was also examined using an optical system and computer software for 3D measurements. As a result, PA6-G with oil was found to be the best choice as a composite material for thin sliding coatings.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


Tribologia ◽  
2021 ◽  
Vol 294 (6) ◽  
pp. 7-12
Author(s):  
Henryk Bąkowski ◽  
Zbigniew Krzysiak

The following work presents the results of research about the assessment of tribological properties of plastics used as components in modes of transport. For this purpose, the wear resistance of materials used in 3D printing (PA6CF and ABS), and extrusion moulding (PA) were tested. The tribological research was carried out with the use of the T-05 tester in the roller-block system. The samples in the form of cuboids with a concave rounding of one wall were made on a 3D printer using the FDM method. The counter-sample was a ring made of aluminium alloy subjected to anodizing. The research was carried out under a variable loads, in reciprocating motion, under dry friction conditions. After that the tribological characteristics were assessed. The research and analysis of the results confirmed the possibility of using selected plastics in modes of transport.


Lubricants ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 11 ◽  
Author(s):  
Jankhan Patel ◽  
Amirkianoosh Kiani

In this study, reduced graphene oxide (rGO) nano platelets were used as an additive to enhance friction and wear properties of oil-based lubricants by preparing three samples at 0.01% w/w, 0.05% w/w, and 0.1% w/w concentrations. To analyze the direct effect of rGO nano platelets on tribological properties, 99.9% pure oil was used as a liquid lubricant. A comparative tribological study was done by performing a ball-on-disk wear test in situ under harsh conditions, which was further analyzed using a non-contact 3D optical profilometer. Morphological evaluation of the scar was done using transmission and scanning electron microscopy (TEM, SEM) at micro and nano levels. The lubricants’ physical properties, such as viscosity and oxidation number, were evaluated and compared for all samples including pure oil (control sample) as per ASTM standards. Findings of all these tests show that adding rGO nano platelets at 0.05% w/w showed significant reduction in friction at high speed and in wear up to 51.85%, which is very promising for increasing the life span of moving surfaces in machinery. Oxidation and viscosity tests also proved that adding rGO nano platelets to all samples does not sacrifice the physical properties of the lubricant, while it improves friction and wear properties.


2020 ◽  
Vol 12 (6) ◽  
pp. 806-809
Author(s):  
Ghanshyam Dass ◽  
Anil Kumar ◽  
Manoj Kumar Kushwaha

Friction and wear properties of NAAO templates were calculated in affinity to pore dimensions and applied load. Homogeneously uniformly decorative synthesized by anodization of nanoporous aluminium oxide films having 65–95 μm thick and pores of 143.5, 105, 84.4 nm diameter. A tribological competency of the material checked out with loads and 250 rpm on the pin on a dry wear disc. The anodized NAAO sample has wear resistance increased by 25% as compared to the non-anodized sample. The pore density little bit impressed the frictional characters of NAAO template. We counsel that these course templates basically contribute to the reduction of friction distrait the pore structure by proving energy-dispersive spectroscopy (EDS).


2017 ◽  
Vol 36 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Ilhan Çelik

AbstractTitanium and its alloys are widely used in many fields, including aerospace and the chemical and biomedical industries. This is due to their mechanical properties, excellent corrosion resistance, and biocompatibility although they do have poor wear resistance. In this study, a duplex layer was successfully formed on the commercially pure titanium surface by duplex treatments (plasma nitriding and physical vapor deposition (PVD)). In the initial treatment, plasma nitriding was performed on the pure titanium samples and in the second treatment, the nitrided samples were coated with CrN by PVD. The friction and wear properties of the duplex-treated samples were investigated for tribological applications. Surface morphology and microstructure of the duplex-treated samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, the tribological properties were investigated using pin-on-disc tribometer. A compound layer composed of ε-Ti2N and δ-TiN phases and a diffusion layer formed under the compound layer were obtained on the surface of pure titanium after the nitriding treatments. CrN coated on the nitrided surface provided an increase in the surface hardness and in the wear resistance.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Bo Chen ◽  
Shenghu Liang ◽  
Song Lu ◽  
Kun Zou ◽  
Yitian Peng ◽  
...  

Chromium (Cr)-based coatings have been widely used to strengthen the friction reduction and wear resistance on various kinds of surface. Here, the stable aqueous dispersion of oxidized multi-walled carbon nanotube (MWCNT) and graphene oxide nanosheets (GOS) was obtained by ultrasonic oxidation treatment. Then, MWCNT-Cr and GOS-Cr composite coatings were prepared using the direct current electrochemical co-deposition process on 420 stainless steel in the electrolyte with the addition of MWCNT and GOS under different current density and temperature. The morphology, structure, hardness and tribological properties of MWCNT-Cr and GOS-Cr composite coating are comparatively studied using pure Cr coating as a baseline. The friction reduction performance of MWCNT-Cr and GOS-Cr composite coatings was improved at optimum current density and temperature. The anti-wear properties of MWCNT-Cr and GOS-Cr composite coatings were enhanced by uniform embedment of MWCNT and GOS in coatings increasing the hardness and lubricity. This study suggests that the introduction of oxidized MWCNT and GOS with good dispersion could enhance the wear resistance and friction reduction of pure Cr coating due to their excellent dispersion, mechanical, and lubricant properties.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2043
Author(s):  
Jerzy Napiórkowski ◽  
Klaudia Olejniczak ◽  
Łukasz Konat

Nitride-bonded silicon carbide is an alternative to steels resistant to abrasive wear. This paper presents the results of a nitride-bonded silicon carbide (SiC) wear test in diverse soil conditions. The test was performed on a “spinning bowl” test stand on three soil types: loamy sand, light loam and ordinary loam. The results were referred to the wear test for materials used to make parts working soil mass, i.e., abrasive wear-resistant steel, boron steel and C + Cr + Nb padding weld. The abrasive wear resistance of silicon carbide was shown to depend on the grain size distribution of the soil being worked. Silicon carbide showed the highest resistance in light soil. However, the padding weld showed higher wear resistance in the other soil conditions. Nitride-bonded silicon carbide had higher wear resistance than the steels under study in all of the soils. These findings are supplemented by an analysis of the condition of the worked surfaces after friction tests. The dominant wear methods in all abrasive masses were micro-cutting and furrowing.


2018 ◽  
Vol 70 (9) ◽  
pp. 1684-1691 ◽  
Author(s):  
Leihua Xu ◽  
Yong Zhang ◽  
Dekun Zhang ◽  
Mei Leng

Purpose This paper aims to report the tribological behavior of Ag nanoparticles/reduced graphene oxide nanocomposites (Ag/RGO NCs) and Ag nanoparticles (Ag NPs) as a green additive in oil with different concentration and under different friction conditions. Design/methodology/approach The Ag/RGO NCs and Ag NPs were both synthesized in a chemical reduction method. The diameter of silver nanoparticles implanted between RGO sheets was about 25 nm and that of silver sol was 70 nm. The morphology and structure of Ag/RGO NC were characterized by TEM, XRD and FTIR. The tribological properties of Ag/RGO NCs and Ag NPs as lubricant oil additive were evaluated by measuring the friction coefficients and wear of the surface in different condition which were tested on UMT-II. Findings The results indicated that both the additives improved the friction-reduced and anti-wear properties of paraffin oil, and Ag/RGO NCs has better tribological performance than Ag NPs. The excellent tribological properties were attributed to the special structure of Ag/RGO NC and the formation of tribofilm reducing the friction and wear on the shearing surfaces. Research limitations/implications It is relatively difficult to observe the morphology of the lubricant film formed on the friction surface and to analyze the chemical composition at different depths of the lubricant film. Originality/value It is the first time for Ag/RGO NCs to be applied to improve the friction-reduced and anti-wear properties of lubricant oil as additive.


Sign in / Sign up

Export Citation Format

Share Document