scholarly journals Molecular basis of proteinopathies: Etiopathology of dementia and motor disorders

2021 ◽  
Vol 75 ◽  
pp. 456-473
Author(s):  
Emilia Zgórzyńska ◽  
Klaudia Krawczyk ◽  
Patrycja Bełdzińska ◽  
Anna Walczewska

Neurodegenerative diseases are one of the most important medical and social problems affecting elderly people, the percentage of which is significantly increasing in the total world population. The cause of these diseases is the destruction of neurons by protein aggregates that form pathological deposits in neurons, glial cells and in the intercellular space. Proteins whose molecules are easily destabilized by point mutations or endogenous processes are alpha-synuclein (ASN), tau and TDP-43. Pathological forms of these proteins form characteristic aggregates, which accumulate in the neurons and are the cause of various forms of dementia and motor disorders. The most common causes of dementia are tauopathies. In primary tauopathies, which include progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick’s disease (PiD), and frontotemporal dementia (FTD), modified tau molecules disrupt axonal transport and protein distribution in neurons. Ultimately, the helical filaments and neurofibrillary tangles of tau lead to neuron death in various structures of the brain. In Alzheimer’s disease hyperphosphorylated tau tangles along with β amyloid plaques are responsible for the degeneration of the hippocampus, entorhinal cortex and amygdala. The most prevalent synucleinopathies are Parkinson’s disease, multiple system atrophy (MSA) and dementia with Lewy bodies, where there is a degeneration of neurons in the extrapyramidal tracts or, as in MSA, autonomic nerves. TDP-43 inclusions in the cytoplasm cause the degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) and in one of the frontotemporal dementia variant (FTLD-TDP). In this work ASN, tau and TDP-43 structures are described, as well as the genetic and sporadic factors that lead to the destabilization of molecules, their aggregation and incorrect distribution in neurons, which are the causes of neurodegenerative diseases.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 656
Author(s):  
Dariusz Koziorowski ◽  
Monika Figura ◽  
Łukasz M. Milanowski ◽  
Stanisław Szlufik ◽  
Piotr Alster ◽  
...  

Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.


Author(s):  
Sandhya Mangalore ◽  
Shiva Shanker Reddy Mukku ◽  
Sriharish Vankayalapati ◽  
Palanimuthu Thangaraju Sivakumar ◽  
Mathew Varghese

Abstract Background Phenotyping dementia is always a complex task for a clinician. There is a need for more practical biomarkers to aid clinicians. Objective The aim of the study is to investigate the shape profile of corpus callosum (CC) in different phenotypes of dementia. Materials and Methods Our study included patients who underwent neuroimaging in our facility as a part of clinical evaluation for dementia referred from Geriatric Clinic (2017–2018). We have analyzed the shape of CC and interpreted the finding using a seven-segment division. Results The sample included MPRAGE images of Alzheimer’ dementia (AD) (n = 24), posterior cortical atrophy- Alzheimer’ dementia (PCA-AD) (n = 7), behavioral variant of frontotemporal dementia (Bv-FTD) (n = 17), semantic variant frontotemporal dementia (Sv-FTD) (n = 11), progressive nonfluent aphasia (PNFA) (n = 4), Parkinson’s disease dementia (PDD) (n = 5), diffuse Lewy body dementia (n = 7), progressive supranuclear palsy (PSP) (n = 3), and corticobasal degeneration (CBD) (n = 3). We found in posterior dementias such as AD and PCA-AD that there was predominant atrophy of splenium of CC. In Bv-FTD, the genu and anterior half of the body of CC was atrophied, whereas in PNFA, PSP, PDD, and CBD there was atrophy of the body of CC giving a dumbbell like profile. Conclusion Our study findings were in agreement with the anatomical cortical regions involved in different phenotypes of dementia. Our preliminary study highlighted potential usefulness of CC in the clinical setting for phenotyping dementia in addition to clinical history and robust biomarkers.


2007 ◽  
Vol 10 (2) ◽  
pp. 3-14 ◽  
Author(s):  
M Ozansoy ◽  
A Başak

Tauopathies: A Distinct Class of Neurodegenerative DiseasesNeurodegenerative diseases are characterized by neuronal loss and intraneuronal accumulation of fibrillary materials, of which, neurofibrillary tangles (NFT) are the most common. Neurofibrillary tangles also occur in normal aging and contain the hyperphosphorylated microtubule-associated protein tau. A detailed presentation is made of the molecular bases of Alzheimer's disease (AD), postencephalitic parkinsonism, amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of Guam, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick's disease, frontotemporal dementia (FTD), Down's syndrome, myotonic dystrophy (DM) and Niemann-Pick Type C (NPC) disease, which are considered to be common tauopathies. The unique human tau gene extends over 100 kb of the long arm of chromosome 17 and contains 16 exons. The human brain contains six tau isoforms that contain from 352 to 441 amino acids. To date, 34 pathogenic tau mutations have been described among 101 families affected by FTD with parkinsonism linked to chromosome 17 (FTDP-17). These mutations may involve alternative splicing of exon 10 that lead to changes in the proportion of 4-repeat- and 3-repeat-tau isoforms, or may modify tau interactions with microtubules. Tau aggregates differ in degree of phosphorylation and in content of tau isoforms. Five classes of tauopathies have been defined depending on the type of tau aggregates. The key event in tauopathies is the disorganization of the cytoskeleton, which is based on mutations/polymorphisms in the tau gene and lead to nerve cell degeneration. In this review, tauopathies as a distinct class of neurodegenerative diseases are discussed with emphasis on their molecular pathology and genetics.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Massimiliano Zanin ◽  
Bruno F. R. Santos ◽  
Paul M. A. Antony ◽  
Clara Berenguer-Escuder ◽  
Simone B. Larsen ◽  
...  

Abstract Mitochondrial dysfunction is linked to pathogenesis of Parkinson’s disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation.


2020 ◽  
Vol 68 (10) ◽  
pp. 669-678
Author(s):  
Ningshan Wang ◽  
Jennifer Garcia ◽  
Roy Freeman ◽  
Christopher H. Gibbons

The detection of cutaneous phosphorylated alpha-synuclein (P-syn) in patients with Parkinson’s disease (PD) has ranged from 30% to 100% across different studies. We hypothesize that part of the variability in P-syn detection is due to methodological differences using sections of different tissue thickness. Three skin biopsies were obtained from 29 individuals with PD and 21 controls. Tissues were cut into 10-, 20-, and 50-µm-thick sections and double-stained with protein gene product (PGP) 9.5 and P-syn. We quantified the deposition of P-syn with and without PGP 9.5 in sweat glands, pilomotor muscle, and blood vessels using confocal digital images of autonomic structures. Overall, the P-syn-positive rates with PGP 9.5 colocalization in subjects with PD were 100% using 50 µm sections, 90% using 20 µm sections, and 73% using 10 µm sections with 100% specificity. (No P-syn was detected within control subjects.) Without PGP 9.5, colocalization of the P-syn-positive rates was 100% for all samples, but specificity dropped below 70%. In this study, double-immunostained 50 µm skin biopsy tissue sections are superior to 20 and 10 µm tissue sections at detecting P-syn in subjects with PD. The increased sensitivity is likely secondary to a combination of greater volume of tissue analyzed and improved visualization of nerve fiber architecture.


2019 ◽  
Vol 20 (16) ◽  
pp. 3903 ◽  
Author(s):  
Miriam Ciani ◽  
Cristian Bonvicini ◽  
Catia Scassellati ◽  
Matteo Carrara ◽  
Carlo Maj ◽  
...  

Frontotemporal dementia (FTD) is a common form of dementia among early-onset cases. Several genetic factors for FTD have been revealed, but a large proportion of FTD cases still have an unidentified genetic origin. Recent studies highlighted common pathobiological mechanisms among neurodegenerative diseases. In the present study, we investigated a panel of candidate genes, previously described to be associated with FTD and/or other neurodegenerative diseases by targeted next generation sequencing (NGS). We focused our study on sporadic FTD (sFTD), devoid of disease-causing mutations in GRN, MAPT and C9orf72. Since genetic factors have a substantially higher pathogenetic contribution in early onset patients than in late onset dementia, we selected patients with early onset (<65 years). Our study revealed that, in 50% of patients, rare missense potentially pathogenetic variants in genes previously associated with Alzheimer’s disease, Parkinson disease, amyotrophic lateral sclerosis and Lewy body dementia (GBA, ABCA7, PARK7, FUS, SORL1, LRRK2, ALS2), confirming genetic pleiotropy in neurodegeneration. In parallel, a synergic genetic effect on FTD is suggested by the presence of variants in five different genes in one single patient. Further studies employing genome-wide approaches might highlight pathogenic variants in novel genes that explain the still missing heritability of FTD.


2020 ◽  
Vol 10 (4) ◽  
pp. 1429-1442
Author(s):  
Marianne von Euler Chelpin ◽  
Linda Söderberg ◽  
Johanna Fälting ◽  
Christer Möller ◽  
Marco Giorgetti ◽  
...  

Background: Currently, there is no established biomarker for Parkinson's disease (PD) and easily accessible biomarkers are crucial for developing disease-modifying treatments. Objective: To develop a novel method to quantify cerebrospinal fluid (CSF) levels of α-synuclein protofibrils (α-syn PF) and apply it to clinical cohorts of patients with PD and atypical parkinsonian disorders. Methods: A cohort composed of 49 patients with PD, 12 with corticobasal degeneration (CBD), 22 with progressive supranuclear palsy, and 33 controls, that visited the memory clinic but had no biomarker signs of Alzheimer’s disease (AD, tau<350 pg/mL, amyloid-beta 42 (Aβ42)>530 pg/mL, and phosphorylated tau (p-tau)<60 pg/mL) was used in this study. The CSF samples were analyzed with the Single molecule array (Simoa) technology. Total α-synuclein (α-syn) levels were analyzed with a commercial ELISA-kit. Results: The assay is specific to α-syn PF, with no cross-reactivity to monomeric α-syn, or the β- and γ-synuclein variants. CSF α-syn PF levels were increased in PD compared with controls (62.1 and 40.4 pg/mL, respectively, p = 0.03), and CBD (62.1 and 34.2 pg/mL, respectively, p = 0.02). The accuracy of predicting PD using α-syn PF is significantly different from controls (area under the curve 0.68, p = 0.0097) with a sensitivity of 62.8% and specificity of 67.7%. Levels of total α-syn were significantly different between the PD and CBD groups (p = 0.04). Conclusion: The developed method specifically quantifies α-syn PF in human CSF with increased concentrations in PD, but with an overlap with asymptomatic elderly controls.


2020 ◽  
Vol 21 (6) ◽  
pp. 2108 ◽  
Author(s):  
Wioletta Rozpędek-Kamińska ◽  
Natalia Siwecka ◽  
Adam Wawrzynkiewicz ◽  
Radosław Wojtczak ◽  
Dariusz Pytel ◽  
...  

Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism—accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner. Under mild to moderate ER stress, UPR has a pro-adaptive role. However, severe or long-termed ER stress conditions directly evoke shift of the UPR toward its pro-apoptotic branch, which is considered to be a possible cause of neurodegeneration. To this day, there is no effective cure for Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), or prion disease. Currently available treatment approaches for these diseases are only symptomatic and cannot affect the disease progression. Treatment strategies, currently under detailed research, include inhibition of the PERK-dependent UPR signaling branches. The newest data have reported that the use of small-molecule inhibitors of the PERK-mediated signaling branches may contribute to the development of a novel, ground-breaking therapeutic approach for neurodegeneration. In this review, we critically describe all the aspects associated with such targeted therapy against neurodegenerative proteopathies.


Author(s):  
J Keith-Rokosh ◽  
L C Ang

Objectives:The neuropathological findings of 32 progressive supranuclear palsy (PSP) cases over a period of 17 years were reviewed.Results:Of the 26 cases with adequate clinical data, 20 patients either presented with cognitive dysfunction or developed a cognitive impairment subsequently during the course of the disease. Co-existing changes of argyrophilic grains and corticobasal degeneration (CBD) were found in 28% and 32% of the cases respectively. Alzheimer-related pathology was found in 69% of cases but only 18.75% of cases fulfilled the consortium to establish a registry for Alzheimer's disease (CERAD) criteria for either definite or probable Alzheimer's disease. Lewy bodies were noted in four cases (12.5%), all in the subcortical regions. Only seven cases of PSP showed no pathological evidence of other co-existing neurodegenerative diseases. The severity of the cerebrovascular pathology in this cohort was insufficient to explain any clinical symptomatology.Conclusions:As in previous studies, this study has demonstrated the frequent co-existence of pathological changes usually noted in other neurodegenerative diseases in PSP. Whether these coexisting pathological changes contribute to the cognitive impairment in PSP remains uncertain.


Sign in / Sign up

Export Citation Format

Share Document