scholarly journals Biochar and its impact on soil properties, growth and yield of okra plants

2020 ◽  
Vol 16 (2) ◽  
pp. 29-39
Author(s):  
Diego Bispo dos Santos Farias ◽  
Maria Iderlane de Freitas ◽  
Ariovaldo Antonio Tadeu Lucas ◽  
Maria Isidória Silva Gonzaga

Applying biochar to the soil can mitigate problems that hinder agricultural production, such as water scarcity and low fertility soils. The objective of this research was to evaluate the impact of dry coconut husk biochar and sewage sludge combinations on soil chemical characteristics, growth, yield and water productivity of okra crop. The experiment was arranged in randomized blocks, with 6 treatments (CHB+BSS -coconut husk biochar + biochar of sewage sludge, CHB+RSS-coconut husk biochar + raw sewage sludge, BSS+RSS -biochar of sewage sludge + raw sewage sludge, CHB -coconut husk biochar, BSS -biochar of sewage sludge, WB -without biochar (control)). Plant height, number of fruits per plant, yield and water use productivity were evaluated. To evaluate the effect of biochar on soil, soil samples weretaken to determine pH, CEC, P, K, Ca, Mg concentrations after incorporation of biochar into the soil. The BSS + RSS and BSS treatments provided better results on okra production and growth characteristics with a 421.15% and 419% productivity increase, respectively, compared to the control treatment. The BSS and BSS + RSS treatments provided better water productivity,with values of 14.5 and 13.3kilogramproduced for each cubic meter of water applied, respectively.All soil chemical characteristics analyzed were modified when the biochar was incorporated into the soil. The results provide valuable insight that okra growers can embrace the use of the combination BSS+RSS and BSS, providing better yields and lower water use in growing this plant.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 585
Author(s):  
Catalina Iticescu ◽  
Puiu-Lucian Georgescu ◽  
Maxim Arseni ◽  
Adrian Rosu ◽  
Mihaela Timofti ◽  
...  

The use of sewage sludge in agriculture decreases the pressure on landfills. In Romania, massive investments have been made in wastewater treatment stations, which have resulted in the accumulation of important quantities of sewage sludge. The presence of these sewage sludges coincides with large areas of degraded agricultural land. The aim of the present article is to identify the best technological combinations meant to solve these problems simultaneously. Adapting the quality and parameters of the sludge to the specificity of the land solves the possible compatibility problems, thus reducing the impact on the environment. The physico-chemical characteristics of the fermented sludge were monitored and optimal solutions for their treatment were suggested so as to allow that the sludge could be used in agriculture according to the characteristics of the soils. The content of heavy metals in the sewage sludge was closely monitored because the use of sewage sludge as a fertilizer does not allow for any increases in the concentrations of these in soils. The article identifies those agricultural areas which are suitable for the use of sludge, as well as ways of correcting some parameters (e.g., pH), which allow the improvement of soil quality and obtained higher agricultural production.


2016 ◽  
Vol 30 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Mahmoud M. Ibrahim ◽  
Ahmed A. El-Baroudy ◽  
Ahmed M. Taha

Abstract Field experiments was conducted to determine the best irrigation scheduling and the proper period for injecting fertilizers through drip irrigation water in a sandy soil to optimize maize yield and water productivity. Four irrigation levels (0.6, 0.8, 1.0 and 1.2) of the crop evapotranspiration and two fertigation periods (applying the recommended fertilizer dose in 60 and 80% of the irrigation time) were applied in a split-plot design, in addition to a control treatment which represented conventional irrigation and fertilization of maize in the studied area. The results showed that increasing the irrigation water amount and the fertilizer application period increased vegetative growth and yield. The highest grain yield and the lowest one were obtained under the treatment at 1.2 and of 0.6 crop evapotranspiration, respectively. The treatment at 0.8 crop evapotranspiration with fertilizer application in 80% of the irrigation time gave the highest water productivity (1.631 kg m−3) and saved 27% of the irrigation water compared to the control treatment. Therefore, this treatment is recommended to irrigate maize crops because of the water scarcity conditions of the studied area.


2011 ◽  
Vol 6 (No. 1) ◽  
pp. 10-20 ◽  
Author(s):  
O.O. Odubanjo ◽  
A.A. Olufayo ◽  
P.G. Oguntunde

Field experiments were conducted at the Agricultural Engineering Experimental Farm of The Federal University of Technology, Akure, during 2006/2007 and 2007/2008 seasons to investigate the response of cassava under drip irrigation. The experiment was laid out in a randomised complete block design (RCBD) with three replications. The treatments were based on four different water regimes; with T100 receiving 100% available water (AW), T<sub>50</sub> and T<sub>25</sub> receiving 50% and 25% of AW and T<sub>0</sub> with zero irrigation (control treatment). Disease free stems of the cassava cultivar TMS 91934 were planted at a spacing of 1 m by 1 m. The results indicated that T<sub>100</sub> full treatment produced the highest average total dry matter yield of 49.12 and 37.62 t/ha in 2006/07 and 2007/08 cropping seasons, respectively. However, the average total dry matter production in T<sub>50</sub>, T<sub>25</sub>, and T<sub>0</sub> showed significant differences in their values. Low total dry matter yields of 7.12 and 5.92 t/ha, respectively, were associated with T<sub>0</sub> for the two cropping seasons. The total water use of 1491.75 and 1701.13 mm was recorded for T<sub>100</sub>, while total water use of 729.00 and 651.13 mm were obtained for T<sub>0</sub> in the two cropping seasons. The water use efficiency determined for the two cropping seasons ranged between 7.38 kg/ha and 32.93 kg/ha. The percentages of total water applied from total water use for T<sub>100</sub> were 51.11% and 61.72%, while 14.83% and 17.85% were recorded for T<sub>25 </sub>for 2006/07 and 2007/08 cropping seasons, respectively.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1265
Author(s):  
Maged Elsayed Ahmed Mohammed ◽  
Mohammed Refdan Alhajhoj ◽  
Hassan Muzzamil Ali-Dinar ◽  
Muhammad Munir

Water scarcity is a major constraint in arid and semi-arid regions. Crops that require less irrigation water and those, which are considered drought-tolerant such as date palm (Phoenix dactylifera L.), are dominant in these regions. Despite the tolerance of these crops, the development of technologies that ensure efficient use of irrigation water is imperative. Taking these issues into consideration, the study was conducted to investigate the impact of limited irrigation water using a new subsurface irrigation system (SSI) on gas exchange, chlorophyll content, water use efficiency, water productivity, fruit physicochemical characteristics, and yield of date palm (cv. Sheshi). The impact of the SSI system was compared with two surface irrigation systems, namely, surface drip irrigation (SDI) and surface bubbler irrigation (SBI). The field experiment was carried out during 2018 and 2019 at the Date Palm Research Center of Excellence, King Faisal University, Kingdom of Saudi Arabia. The annual crop evapotranspiration (ETc) was 2544 mm. The applied irrigation water was set at 50%, 75%, and 125% of ETc for SSI, SDI, and SBI, respectively, which were based on the higher crop water productivity recorded in an initial field study. The total annual volume of water applied for SSI, SDI, and SBI was 22.89, 34.34, and 57.24 m3 palm−1, respectively. The crop water productivity (CWP) at the SSI system was significantly higher, with a value of 1.15 kg m−3, compared to the SDI (0.51 kg m−3) and SBI systems (0.37 kg m−3). The photosynthetic water use efficiency (WUE) was 10.09, 9.96, and 9.56 μmol CO2 mmol−1 H2O for SSI, SBI, and SDI, respectively. The maximum chlorophyll content (62.4 SPAD) was observed in SBI, followed by SSI (58.9 SPAD) and SDI (56.9 SPAD). Similarly, net photosynthesis and the transpiration rate were significantly higher in SBI and lowest in SSI. However, the SSI system substantially increased palm yield and enhanced fruit quality. The new SSI system, through its positive impact on the efficiency of irrigation water use and enhancement on fruit yield and fruit quality of date palm, seems quite suitable for the irrigation of palm trees in arid and semi-arid regions.


2015 ◽  
Vol 7 (3) ◽  
pp. 338-344 ◽  
Author(s):  
Hamid-Reza FALLAHI ◽  
Reza TAHERPOUR KALANTARI ◽  
Mahsa AGHHAVANI-SHAJARI ◽  
Mohammad-Ghasem SOLTANZADEH

Sustainable use of water resources in agriculture is a necessity for many arid countries. In order to investigate the effect of water deficit, irrigation after 120 (control), 155 (moderate water stress) and 190 mm (sever water stress) pan evaporation and super absorbent polymer rates (SAP) (0, 30, 60 and 90 kg ha-1) on growth, yield and water use efficiency of cotton, an experiment was conducted as split plot based on a randomized complete block design with three replications. Moreover, the effect of water quality (distilled water and solutions of 0.25, 0.5, 0.75, 1 and 1.25% NaCl) was investigated on water holding capacity by SAP. Results revealed that moderate water stress (irrigation intervals of aprox. 15 days) along with 60 kg ha-1 SAP application was the best treatment in terms of growth and yield indices of cotton. The results for plant height, plant dry weight, boll number per plant and fiber yield in this treatment were 16, 28, 42 and 10% higher than control treatment, respectively. Water deficit and SAP application improved the water use efficiency (WUE) of cotton. The amount of WUE in moderate water stress treatment along with consumption of 60 or 90 kg ha-1 SAP was 26% higher than for control treatment. In addition, water holding capacity by SAP in distilled water treatment was 7 times higher than in the case of 1.25% NaCl solution. The overall results showed that irrigation deficit and SAP application are two appropriate strategies for crop production in areas affected by drought stress, especially if low saline water sources are used.


2024 ◽  
Vol 84 ◽  
Author(s):  
H. Faiz ◽  
O. Khan ◽  
I. Ali ◽  
T. Hussain ◽  
S. T. Haider ◽  
...  

Abstract Transplanting time and genotype contribute to improving crop yield and quality of eggplant (Solanum melongena L.). A field experiment was conducted to investigate the impact of foliar applied of triacontanol (TRIA) and eggplant genotypes 25919, Nirala, 28389 and Pak-10927,transplanted on 1 March,15 March, and 1 April on exposure to high air temperature conditions. The experiment was performed according to Randomized Complete Block Design and the data was analyzed by using Tuckey,s test . The TRIA was applied at 10µM at flowering stage; distilled water was used as the control. Rate of photosynthesis and transpiration, stomatal conductance, water use efficiency, and effects on antioxidative enzymes (superoxide dismutase, catalase and peroxidase) were evaluated. The 10µM TRIA increased photosynthesis rate and water use efficiency and yield was improved in all genotypes transplanted at the different dates. Foliar application of 10µM TRIA increased antioxidative enzyme activities (SOD, POD & CAT) and improved physiological as well as biochemical attributes of eggplant genotypes exposed to high heat conditions. Highest activity of dismutase enzyme 5.41mg/1g FW was recorded in Nirala genotype in second transplantation. Whereas, lowest was noted in PAK-10927 (2.30mg/g FW). Maximum fruit yield was found in accession 25919 (1.725kg per plant) at 1st transplantation with Triacontanol, whereas accession PAK-10927 gave the lowest yield (0.285 kg per plant) at control treatment on 3rd transplantation. Genotype, transplanting date and application of TRIA improved growth, yield and quality attributes under of heat stress in eggplant.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1230 ◽  
Author(s):  
Maria do Rosário Cameira ◽  
Luís Santos Pereira

The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at different scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Waldemar Helios ◽  
Władysław Malarz ◽  
Marcin Kozak ◽  
Andrzej Kotecki

AbstractThe objective of our study was to assess the residual effect of sewage sludge on the growth and yield of Prairie cordgrass and the content of crude ash, macroelements and heavy metals in the plant biomass. Field trials conducted in the years 2011 to 2013 focused on the assessment of the impact of municipal sewage sludge applied from 2008 to 2010on the growth and yield of Prairie cordgrass. The experiments followed the split-plot design with two variables: the rate of sewage sludge (DM-dry matter) at 0, 1.4, 2.8 and 4.2 t ha


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 115
Author(s):  
Alaa I. B. Abou-Sreea ◽  
Marwa Kamal ◽  
Dalia M. El Sowfy ◽  
Mostafa M. Rady ◽  
Gamal F. Mohamed ◽  
...  

Phosphorus (P) is an essential macronutrient necessary for plant growth, development, and reproduction. Two field experiments were carried out in 2018/2019 and 2019/2020 on P-deficient soil to evaluate the impact of foliar fertilization with nanophosphorus (nP) on growth, yield, and physio-biochemical indices, as well as trigonelline content of fenugreek plants under deficient irrigation (dI) stress (a deficit of 20 and 40% of crop evapotranspiration; dI-20 and dI-40). The growth and yield traits, leaf integrity (relative water content and membrane stability index), photosynthetic pigment contents, leaf and seed P contents, and stem and leaf anatomical features significantly decreased under dI-20, with greater reductions recorded under dI-40. In contrast, water-use efficiency, osmoprotective compounds, including free amino acids, soluble sugars, proline, and trigonelline, along with antioxidant contents (ascorbate, glutathione, phenolics, and flavonoids) and their activity increased significantly under both dI-20 and dI-40. However, foliar feeding with nano-P considerably increased plant growth and yield traits, leaf integrity, photosynthetic pigments contents, leaf and seed P contents, and anatomical features. Besides, water-use efficiency, osmoprotectant contents, and antioxidant content and activity were further increased under both dI-20 and dI-40. The positive effects were more pronounced with the smaller nP (25 nm) than the larger nP (50 nm). The results of this study backed up the idea of using foliar nourishment with nP, which can be effective in modulating fenugreek plant growth and seed production.


Author(s):  
Abhay Kumar ◽  
Stephen Joseph ◽  
Ellen R. Graber ◽  
Sara Taherysoosavi ◽  
David R. G. Mitchell ◽  
...  

Abstract Background Fostering plant growth and improving agricultural yields by adding “macro”-sized biochar to soil has been extensively explored. However, the impact and mechanism of action of aqueous extracts of biochar applied as foliar fertilizer on plant growth and physiology is poorly understood, and was the objective of this study. Extracts were produced from biochars derived from pine wood:clay:sand (PCS-BC; 70:15:15) and wheat straw:bird manure (WB-BC; 50:50) and tested at two dilutions each. The plant influence of the biochar extracts and dilutions were compared with chemical fertilizer made up to the same minor trace element compositions as the applied extracts and a control treatment consisting of only deionized water. Results The WB-BC extract was more alkaline than the PCS-BC extract and exhibited higher electrical conductivity values. Similar to the biochars from which they were derived, the WB-BC extract had higher concentrations of dissolved mineral elements and organic matter than the PCS-BC extract. Despite major differences in chemical composition between the PCS-BC and WB-BC extracts, there was virtually no difference in plant performance between them at any chosen dilution. Foliar application of PCS25, WB50, and WB100 led to a significant increase in the plant fresh biomass in comparison to their corresponding chemical fertilizer and to deionized water. Plant growth parameters including number of leaves and chlorophyll contents in plants treated with biochar extract foliar sprays were significantly higher than in all the other treatments. Electron microscopy and spectroscopy studies showed the deposition of macro- and nanoscale organomineral particles and agglomerates on leaf surfaces of the examined PCS25-treated plant. Detailed study suggests that carbon nanomaterials and TiO2 or Si-rich nanoscale organomineral complexes or aluminosilicate compounds from biochar extract were main contributors to increased plant growth and improved plant performance. Conclusion These results suggest that biochar extracts have the potential to be used as nanofertilizer foliar sprays for enhancing plant growth and yield.


Sign in / Sign up

Export Citation Format

Share Document