scholarly journals Does COVID-19 Affect Adult Neurogenesis? A Neurochemical Perspective

2021 ◽  
Author(s):  
Jayakumar Saikarthik ◽  
Ilango Saraswathi ◽  
Abdulrahman A. Al-Atram

COVID-19 has been found to cause neuropsychiatric symptoms which indicate brain involvement. SARS-CoV-2 may enter the brain by damaging and penetrating olfactory mucosa and via other possible routes like damaged blood–brain barrier, and hematologic spread. With SARS-CoV-2 having a higher affinity to ACE2 receptors, brain regions that have higher ACE2 receptors like the hippocampus, are more vulnerable to the effect of the viral invasion. In addition, immune cell activation, an important feature of COVID-19, leads to cytokine storm which causes neurotoxicity, neuroinflammation, and neurodegeneration. Impaired adult neurogenesis is related to many psychiatric disorders including depression, bipolar disorder, anxiety disorder, schizophrenia, and PTSD. It is known to be related to the depletion of neurotransmitters, dopamine, serotonin, norepinephrine, GABA, and glutamate which play a major role in adult neurogenesis. A recent study reveals that SSRI which acts by increasing serotonin is proven beneficial in COVID-19 patients. Thus, the current chapter will discuss the impact of COVID-19 on adult neurogenesis with emphasis on the role of ACE2 and neurotransmitters.

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Marius Keller ◽  
Valbona Mirakaj ◽  
Michael Koeppen ◽  
Peter Rosenberger

AbstractCardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.


Author(s):  
Victor Delprat ◽  
Carine Michiels

AbstractCancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
David M Patrick ◽  
Nestor de la Visitacion ◽  
Michelle J Ormseth ◽  
Charles Stein ◽  
Sean S Davies ◽  
...  

Essential hypertension and systemic lupus erythematosus (SLE) are devastating conditions that disproportionately affect women. SLE has heterogeneous manifestations and treatment is limited to the use of non-specific global immunosuppression. Importantly, there is an increased prevalence of hypertension in women with SLE compared to healthy controls. Isolevuglandins (IsoLGs) are oxidation products of fatty acids that form as a result of reactive oxygen species. These molecules adduct covalently to lysine residues of proteins. Adducted proteins are then presented as autoantigens to T-cells resulting in immune cell activation. Previous studies have shown an essential role of IsoLGs in immune cell activation and the development of hypertension in animal models. We hypothesize that isoLGs are important for the development of hypertension and systemic immune activation in SLE. We first examined isoLG adduct accumulation within monocytes of human subjects with SLE compared to healthy controls. By flow cytometry, we found marked accumulation of isoLG adducts within CD14 + monocytes (34.2% ± 12.4% vs 3.81% ± 2.1% of CD14 + , N = 10-11, P <0.05). We confirmed this increase in isoLG adducts by mass spectrometry. To determine a causative role of isoLG adducts in immune activation and hypertension in SLE, we employed the B6.SLE123 and NZBWF1 mouse models of SLE. Animals were treated with the isoLG scavenger 2-hydroxybenzylamine (2-HOBA) or vehicle beginning at 7 weeks and were sacrificed at 32 weeks of age. C57BL/6 and NZW were used as controls. Importantly, treatment with 2-HOBA attenuated blood pressure in both mouse models (systolic BP 136.2 ± 5.6 mmHg for B6.SLE123 vs 120.9 ± 4.46 mmHg for B6.SLE123 +2HOBA; 164.7 ± 24.4 mmHg for NZBWF1 vs 136.9 ± 14.9 mmHg for NZBWF1 +2HOBA, N = 6-8, P < 0.05). Moreover, treatment with 2-HOBA reduced albuminuria and renal injury in the B6.SLE123 model (albumin/creatinine ratio 33.8 ± 2.0 x 10 -2 μg/mg for B6.SLE123 vs 5.5 ± 0.9 x 10 -2 μg/mg for B6.SLE123 +2HOBA, N = 7-9, P < 0.05). Finally, immune cell accumulation in primary and secondary lymphoid organs is significantly attenuated by 2-HOBA. These studies suggest a critical role of isoLG adduct accumulation in both systemic immune activation and hypertension in SLE.


2019 ◽  
Vol 30 ◽  
pp. vii25-vii26
Author(s):  
M. Sokac ◽  
L. Dyrskjøt Andersen ◽  
M. Roelsgaard Jakobsen ◽  
N. Birkbak

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xueyi Zhu ◽  
Jie Cui ◽  
La Yi ◽  
Jingjing Qin ◽  
Wuniqiemu Tulake ◽  
...  

Asthma is associated with innate and adaptive immunity mediated by immune cells. T cell or macrophage dysfunction plays a particularly significant role in asthma pathogenesis. Furthermore, crosstalk between them continuously transmits proinflammatory or anti-inflammatory signals, causing the immune cell activation or repression in the immune response. Consequently, the imbalanced immune microenvironment is the major cause of the exacerbation of asthma. Here, we discuss the role of T cells, macrophages, and their interactions in asthma pathogenesis.


2016 ◽  
Vol 311 (4) ◽  
pp. R714-R720 ◽  
Author(s):  
Lia E. Taylor ◽  
Jennifer C. Sullivan

Obesity is a potent predictor of cardiovascular disease and associated risk factors, including hypertension. Systemic inflammation has been suggested by a number of studies to be an important link between excess adiposity and hypertension, yet the majority of the studies have been conducted exclusively in males. This is problematic since women represent ∼53% of hypertensive cases and are more likely than men to be obese. There is a growing body of literature supporting a central role for immune cell activation in numerous experimental models of hypertension, and both the sex of the subject and the sex of the T cell have been shown to impact blood pressure (BP) responses to hypertensive stimuli. Moreover, sex steroid hormones play an important role in energy homeostasis, as well as in the regulation of immune responses; estrogen, in particular, has a well-known impact on both cardiovascular and metabolic disorders. Therefore, the purpose of this review is to examine whether sex or sex hormones regulate the role of the immune system in the development of hypertension and related vascular dysfunction in response to metabolic changes and stimuli, including a high-fat diet.


Author(s):  
Peggy Mason

With the knowledge acquired from this book, the brain regions responsible for each of the symptoms suffered by Jean-Dominique Bauby can be identified. It is also possible to understand why thought, language, and memory were unaffected in Bauby. Bauby’s narrative is used to launch a consideration of the role of embodiment in affective experience. The experience of Clive Wearing who, after a bout of encephalitis, was left without the ability to make new declarative memories is introduced to illustrate the highly personal and individual nature of people’s reactions to disease or clinical impairment. The impact of disease does not stop with the patient but extends to the patient’s loved ones and caregivers. This is particularly true of patients with dementia or those in an altered state of consciousness. Finally the reader is encouraged to use their understanding of the nervous system to provide compassionate care for patients.


Sign in / Sign up

Export Citation Format

Share Document