scholarly journals Silver Nanoparticles Offer Effective Control of Pathogenic Bacteria in a Wide Range of Food Products

2020 ◽  
Author(s):  
Graciela Dolores Avila-Quezada ◽  
Gerardo Pavel Espino-Solis

According to the Food and Agriculture Organization (FAO), food wastage still causes massive economic loss. A major role in this loss is played by the activities of microbial organisms. Treatments such as heat and irradiation can reduce microorganisms in fruits and vegetables and hence reduce postharvest loss. However, some of these treatments can injure the fruit. Effective chemical treatments against bacterial infestations can result in resistance. A more recent method is the use of silver nanoparticles. These can act in a number of ways including at cellular level by inhibiting the cell wall synthesis, by binding to the surface of the cell membrane and by interposing between the DNA base pairs, and by inhibiting biofilm formation, affecting the thiol group of enzymes, affecting bacterial peptides and hence interfering with cell signaling and attaching to the 30S ribosome subunit. A ground-breaking way to survey the effects of the silver nanoparticles on bacterial populations is by flow cytometry. It allows measurement of many characteristics of single cells, including their functional characteristics such as viability and cell cycle. Bacterial viability assays are used with great efficiency to evaluate antibacterial activity by evaluating the physical rupture of the membrane of the bacteria.

EDIS ◽  
1969 ◽  
Vol 2004 (8) ◽  
Author(s):  
James J. Ferguson

Pascal Liu and others at the International Trade Center, Food and Agriculture Organization (FAO) of the United Nations, reviewed available literature, conducted surveys and interviewed key players in international organic marketing in 2000 for a report entitled "World Markets for Organic Fruit and Vegetables - Opportunities for Developing Countries in the Production and Export of Organic Horticultural Products."  This fact sheet lists the contents and summarizes the main findings of that report with the intention that this information will aid Florida organic fruit and vegetable growers and others in assessing their export potential for European and Japanese markets. This document is HS977, one of a series of the Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: May 2004. https://edis.ifas.ufl.edu/hs213


2020 ◽  
Vol 80 (1) ◽  
pp. 115-121 ◽  
Author(s):  
H. M. Tahir ◽  
N. Pervez ◽  
J. Nadeem ◽  
A. A. Khan ◽  
Z. Hassan

Abstract According to the Food and Agriculture Organization (FAO), roughly one-third of the total food produced is lost globally. The major cause of this wastage is the perishability of fruits and vegetables. Therefore, researchers have endeavored to develop an effective preservation technique. Our study explored the potential application of spider silk as an odourless and edible preservative coating for fruits. The spider silk was collected from spiders reared in the laboratory, following by degumming and dissolution to formulate the silk solution. For this study, apricots were selected as the model fruit. The apricots were dip coated with the formulated silk solution and allowed to dry. In order to enhance the beta sheet content of the silk coating, the fruits were exposed to water annealing for varying intervals of time under vacuum condition. The effect of silk coating and water annealing time period on preservation of fruits was then evaluated morphologically and gravimetrically. The results showed that the fruits, which were used as control, exhibited a greater degree of water loss and suffered from fungal attack. In contrast, the silk coated fruits showed less water loss and were protected from fungal attack. Therefore, the study provides compelling evidence regarding the application of spider silk as a preservative coating.


2009 ◽  
Vol 20 (03) ◽  
pp. 435-457 ◽  
Author(s):  
JAMES T. MURPHY ◽  
RAY WALSHE ◽  
MARC DEVOCELLE

The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules.Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.


2021 ◽  
Vol 98 (1) ◽  
pp. 73-83
Author(s):  
B. G. Andryukov ◽  
N. F. Timchenko ◽  
I. N. Lyapun ◽  
M. P. Bynina ◽  
E. V. Matosova

In the framework of the modern microbiological paradigm, colonies of genetically identical microorganisms are considered as biosocial systems consisting of several heterogeneous clonal cell clusters (bacterial phenotypes) that respond differently to changes in the environment. Phenotypic heterogeneity was found in recent decades in all isogenic populations of pathogenic bacteria. Such heterogeneity provides a selective advantage of cellular phenotypes with changes in the physicochemical parameters of the environment and competitive interaction with other microorganisms. Heterogeneity in bacterial communities is of great importance for the survival of pathogenic bacteria in the host organism, the progression and persistence of infections, as well as the decrease in the effectiveness of antibiotic therapy. The modern spectrum of analytical tools for studying cellular phenotyping is presented both by optical imaging methods and qualitative structural characteristics of single cells, and by omix technologies of quantitative analysis and monitoring of molecular intracellular processes. These diverse tools make it possible not only to identify and modulate phenotypic heterogeneity in isogenic bacterial populations, but also to evaluate the functional significance of cellular phenotypes in the development of the infectious process. The aim of the review is the integration of modern concepts of heterogeneity in isogenic bacterial populations, with an emphasis on the presentation of modern analytical technologies for assessing and monitoring phenotypic typing of single cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
José M. Rojas ◽  
Noemí Sevilla ◽  
Verónica Martín

Peste des petits ruminants virus (PPRV) is a virus that mainly infects goats and sheep causing significant economic loss in Africa and Asia, but also posing a serious threat to Europe, as recent outbreaks in Georgia (2016) and Bulgaria (2018) have been reported. In order to carry out the eradication of PPRV, an objective set for 2030 by the Office International des Epizooties (OIE) and the Food and Agriculture Organization of the United Nations (FAO), close collaboration between governments, pharmaceutical companies, farmers and researchers, among others, is needed. Today, more than ever, as seen in the response to the SARS-CoV2 pandemic that we are currently experiencing, these goals are feasible. We summarize in this review the current vaccination approaches against PPRV in the field, discussing their advantages and shortfalls, as well as the development and generation of new vaccination strategies, focusing on the potential use of adenovirus as vaccine platform against PPRV and more broadly against other ruminant pathogens.


2020 ◽  
Author(s):  
Carlos A Almenara

[THE MANUSCRIPT IS A DRAFT] According to the Food and Agriculture Organization of the United Nations (FAO, 2020), food waste and losses comprises nearly 1.3 billion tonnes every year, which equates to around US$ 990 billion worldwide. Ironically, over 820 million people do not have enough food to eat (FAO, 2020). This gap production-consumption puts in evidence the need to reformulate certain practices such as the controversial monocropping (i.e., growing a single crop on the same land on a yearly basis), as well as to improve others such as revenue management through intelligent systems. In this first part of a series of articles, the focus is on the Peruvian anchoveta fish (Engraulis ringens).


Author(s):  
Gregory A. Barton

This chapter traces the expansion of industrial agricultural methods after the Second World War. Western governments and the Food and Agriculture Organization pushed for increased use of chemical fertilizers to aid development and resist Soviet encroachment. Meanwhile small groups of organic farmers and gardeners adopted Howard’s methods in the Anglo-sphere and elsewhere in the world. European movements paralleled these efforts and absorbed the basic principles of the Indore Method. British parliament debated the merits of organic farming, but Howard failed to persuade the government to adopt his policies. Southern Rhodesia, however, did implement his ideas in law. Desiccation theory aided his attempts in South Africa and elsewhere, and Louise Howard, after Albert’s death, kept alive a wide network of activists with her publications.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Reetika Singh ◽  
Christophe Hano ◽  
Gopal Nath ◽  
Bechan Sharma

Carissa carandas L. is traditionally used as antibacterial medicine and accumulates many antioxidant phytochemicals. Here, we expand this traditional usage with the green biosynthesis of silver nanoparticles (AgNPs) achieved using a Carissa carandas L. leaf extract as a reducing and capping agent. The green synthesis of AgNPs reaction was carried out using 1mM silver nitrate and leaf extract. The effect of temperature on the synthesis of AgNPs was examined using room temperature (25 °C) and 60 °C. The silver nanoparticles were formed in one hour by stirring at room temperature. In this case, a yellowish brown colour was developed. The successful formation of silver nanoparticles was confirmed by UV–Vis, Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The characteristic peaks of the UV-vis spectrum and XRD confirmed the synthesis of AgNPs. The biosynthesised AgNPs showed potential antioxidant activity through DPPH assay. These AgNPs also exhibited potential antibacterial activity against human pathogenic bacteria. The results were compared with the antioxidant and antibacterial activities of the plant extract, and clearly suggest that the green biosynthesized AgNPs can constitute an effective antioxidant and antibacterial agent.


2021 ◽  
Vol 11 (13) ◽  
pp. 5911
Author(s):  
Vanesa Martos ◽  
Ali Ahmad ◽  
Pedro Cartujo ◽  
Javier Ordoñez

Timely and reliable information about crop management, production, and yield is considered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organization (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs), especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to be efficiently integrated into agriculture. The application of RS is indispensable today for a highly productive and sustainable agriculture. Therefore, the present study draws a general overview of RS technology with a special focus on the principal platforms of this technology, i.e., satellites and remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution. Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery, in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs), which is further pushing the boundaries of proficiency through the upgrading of sensors capable of higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies (WST) have streamlined real time information acquisition and programming for respective measures. Improved algorithms and sensors can, not only add significant value to crop data acquisition, but can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by making use of cloud computing. The RS technology generates huge sets of data that necessitate the incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augmenting the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have made the orientation of current research towards the estimation of plant physiological traits rather than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge technologies are discussed in this study. This study can be helpful for researchers, academics, and young students aspiring to play a role in the achievement of sustainable agriculture.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ilgin Akpinar ◽  
Muammer Unal ◽  
Taner Sar

AbstractFusarium species are the primary fungal pathogen affecting agricultural foodstuffs both in crop yield and economic loss. Due to these problems, control of phytopathogenic fungi has become one of the critical problems around the World. Nanotechnology is a new technology with potential in many fields, including agriculture. This study focused on determining potential effects of silver nanoparticles (AgNPs) with different nanosizes (3, 5, 8 and 10 nm) and at different concentrations (12.5–100 ppm) against phytopathogenic Fusarium oxysporum f. sp. radicis-lycopersici (FORL) strains. The maximum antifungal activity was achieved by decreasing nanosize and increasing concentration of AgNPs. Mycelium growth abilities were decreased about 50%, 75% and 90% by AgNPs treatment with 3 nm sizes at 25 ppm, 37.5 ppm and 50 ppm concentrations, respectively. The productivity of fungal biomass in the liquid growth media was found to be too limited at the 25–37.5 ppm of AgNPs concentrations with all sizes. In addition, both septation number and dimensions of micro- and macroconidia were found to be gradually decreased with the application of silver nanoparticles. This work showed that the low concentration of AgNPs could be used as potential antifungal agents and applied for control of phytopathogens.


Sign in / Sign up

Export Citation Format

Share Document