scholarly journals Gastrointestinal Delivery of APIs from Chitosan Nanoparticles

2020 ◽  
Author(s):  
Rayan Sabra ◽  
Nashiru Billa

Successful clinical treatment outcomes rely on achieving optimal systemic delivery of therapeutics. The oral route of administering Active Pharmaceutical Ingredients (API) remains formidable because of ease to the patient and convenience. Yet, the gastrointestinal tract (GIT) poses several barriers that need to be surmounted prior to systemic availability, especially for Class IV type drugs. Drug delivery systems in the form of nanoparticles (NP), can be appropriately formulated to alter the physicochemical properties of APIs, thereby addressing constraints related to absorption from the GIT. Polymers offer amenability in the fabrication of NP due to their diversity. Chitosan has emerged as a strong contender in orally deliverable NP because it is biocompatible, biodegradable and muco-adhesive. Due to the positively charged amine moieties within chitosan (NH3+), interactions with the negatively charged sialic acid of mucin within the mucosa is possible, which favors delayed GI transit and epithelial uptake. This ultimately results in improved systemic bioavailability. Thus, we expect research in the use of chitosan in oral NP delivery to intensify as we transcend the frontier toward clinical testing of viable formulations.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1817
Author(s):  
Sui Ling Janet Tan ◽  
Nashiru Billa

Gastrointestinal absorption remains indispensable in the systemic delivery of most drugs, even though it presents several challenges that, paradoxically, may also provide opportunities that can be exploited to achieve maximal bioavailability. Drug delivery systems made from nanoparticle carriers and especially, lipid carriers, have the potential to traverse gastrointestinal barriers and deploy in the lymphatic pathway, which aptly, is free from first pass via the liver. Several poorly soluble drugs have presented improved systemic bioavailability when couriered in lipid nanoparticle carriers. In this review, we propose an additional frontier to enhancing the bioavailability of poorly soluble drugs when encapsulated in lipid nano-carriers by imparting muco-adhesion to the particles through application of appropriate polymeric coating to the lipid carrier. The combined effect of gastrointestinal muco-adhesion followed by lymphatic absorption is a promising approach to improving systemic bioavailability of poorly soluble drugs following oral administration. Evidence to the potential of this approach is backed-up by recent studies within the review.


2019 ◽  
Vol 56 (2) ◽  
pp. 396-398
Author(s):  
Georgeta Zegan ◽  
Daniela Anistoroaei ◽  
Elena Mihaela Carausu ◽  
Eduard Radu Cernei ◽  
loredana Golovcencu

Amoxicillin and clavulanic acid are two of the most commonly prescribed antibacterial worldwide for treating oral infectious diseases. Oral health is of big importance for well-being and general health. A few novel drug delivery systems were designed for oral treatment and prophylaxis of different diseases in the oral cavity. This work focused on the latest drug delivery development of the most common oral pathologies, namely, periodontitis, oral mucosal infections, dental caries and oral cancer. Herein we reveal the synthesis, characterization and application of chitosan nanoparticles for intracellular transport of the weakly cell-penetrating amoxicillin and clavulanic acid in order to improve their efficacy on bacterial infections.


2020 ◽  
Vol 10 ◽  
Author(s):  
Sapna Saini ◽  
Sanju Nanda ◽  
Anju Dhiman

: Chitosan, a natural biodegradable polymer obtained from deacetylation of chitin, has been used as an approbative macromolecule for the development of various novel drug delivery systems. It is one of the most favorable biodegradable carriers for nanoparticulate drug delivery due to its intrinsic properties, such as biocompatibility, biodegradability, non-toxicity, availability of free reactive amino groups, and ease of chemical modification into different active derivatives. Furthermore, interesting physical properties (film-forming, gelling and thickening) make it a suitable candidate for formulations, such as films, microcapsules, beads, nanoparticles, nanofibres, nanogel and so on. Researchers have reported that chitosan nanoparticles act as a promising vehicle for herbal actives as they provide a superior alternative to traditional carriers and improve pharmaceutical efficiency. As no review of chitosan nanoparticles encapsulating herbal extracts and bioactives has been published till date, a maiden effort has been made to collate and review the use of chitosan nanoparticles for the entrapment of phytoconstituents to yield stable, efficient and safe drug delivery systems. Additionally, the paper presents a comprehensive account of the state-of the-art in fabricating herbal chitosan nanoparticles and their current pharmacological status. A list of patents on chitosan nanoparticles of herbal actives has also been included. This review is intended to serve as a didactic discourse for the formulation scientists endeavoring to develop advanced delivery systems for herbal actives.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2380
Author(s):  
Diedie Li ◽  
Chengzhi Gao ◽  
Meiyan Kuang ◽  
Minhao Xu ◽  
Ben Wang ◽  
...  

RNA interference (RNAi) can mediate gene-silencing by knocking down the expression of a target gene via cellular machinery with much higher efficiency in contrast to other antisense-based approaches which represents an emerging therapeutic strategy for combating cancer. Distinct characters of nanoparticles, such as distinctive size, are fundamental for the efficient delivery of RNAi therapeutics, allowing for higher targeting and safety. In this review, we present the mechanism of RNAi and briefly describe the hurdles and concerns of RNAi as a cancer treatment approach in systemic delivery. Furthermore, the current nanovectors for effective tumor delivery of RNAi therapeutics are classified, and the characteristics of different nanocarriers are summarized.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yixiang Shi ◽  
Ajun Wan ◽  
Yifei Shi ◽  
Yueyue Zhang ◽  
Yupeng Chen

The study of drug release dynamic is aiming at understanding the process that drugs release in human body and its dynamic characteristics. It is of great significance since these characteristics are closely related to the dose, dosage form, and effect of the drugs. The Noyes-Whitney function is used to represent how the solid material is dissolved into solution, and it is well used in study of drug dynamic. In this research, aspirin (acetylsalicylic acid (ASA)) has been encapsulated with different grades of chitosan (CS) varying in molecular weight (Mw) for the purpose of controlled release. The encapsulation was accomplished by ionic gelation technology based on assembly of positively charged chitosan and negatively charged sodium tripolyphosphate (TPP). The encapsulation efficiency, loading capacity, and drug release behavior of aspirin loaded chitosan nanoparticles (CS-NPs) were studied. It was found that the concentration of TPP and Aspirin, molecular weights of chitosan have important effect on the drug release patterns from chitosan nanoparticles. The results for simulation studies show that the Noyes-Whitney equation can be successfully used to interpret the drug release characteristics reflected by our experimental data.


2021 ◽  
Author(s):  
Alla Krasnoshtanova ◽  
Anastasiya Bezyeva

"The oral route of drug inclusion is the most convenient for the patient. In addition to ease of use, this method of drug inclusion has such advantages as non-invasiveness of inclusion, absence of complications during injection; comparative safety for the organism due to the passage of the active substance and auxiliary compounds through the gastrointestinal tract; the possibility of introducing larger doses of the drug at one time. However, despite the obvious advantages, the oral route of inclusion has a number of significant disadvantages that significantly limit its use for a number of drugs. Among them are: relatively slow therapeutic action of the drug with this route of inclusion; the aggressive effect of a number of drugs (for example, antibiotics) on the gastrointestinal tract; low bioavailability of a number of substances (especially high molecular weight hydrophilic compounds), caused by poor permeability of the intestinal epithelium for hydrophilic and large molecules, as well as enzymatic and chemical degradation of the active substance in the gastrointestinal tract. There are various approaches used in the development of oral drug delivery systems. In particular, for the targeted delivery of drugs, it is proposed to use nano- and microcapsules with mucoadhesive properties. Among the polymers used for the synthesis of these microparticles, it is preferable to use pH-dependent, gelable biopolymers that change their structure depending on the acidity of the environment. Microcapsules obtained from compounds with the above properties are capable of protecting the active substance (or from the active substance) in the stomach environment and ensuring its release in the intestine. These properties are possessed by such polysaccharides as alginate, pectin, carrageenan, xylan, etc. The listed biopolymers are non-toxic, biocompatible, and biodegradable, which makes microparticles containing these polysaccharides promising as oral drug delivery systems. To impart mucoadhesive properties to nanoparticles, complexes of the listed polymers with chitosan are used. In this research, pectin, a polysaccharide formed mainly by residues of galacturonic acid, was used as a structural polymer. The concentrations of substances in the initial solutions were selected that were optimal for the synthesis of microcapsules. The main parameters for evaluating the resulting microparticles were the size of the capsules (less than 1 μm for oral inclusion), the zeta-potential, showing the tendency of the microparticles to stick together, and the completeness of the binding of the microparticles to chitosan. It was found that the optimal solutions for the synthesis of microparticles are: 15.7 ml of a solution of pectin 0.093% by weight, 3.3 ml of a solution of chitosan 0.07% by weight and 1.0 ml of a solution of CaCl2 20 mM. The diameter of the microparticles obtained by this method was 700-800 nm, and the value of their zetta-potential, equal to - (34 ± 3) mV, does not cross the particle adhesion threshold. It was also found that the synthesis of microparticles at these concentrations of calcium chloride provides the most complete binding of chitosan to their surface, which increases the mucoadhesive properties of microparticles."


2020 ◽  
Vol 21 (14) ◽  
pp. 5016
Author(s):  
Roxana Popescu ◽  
Mihaela Violeta Ghica ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Valentina Anuța ◽  
Dumitru Lupuliasa ◽  
...  

In an attempt to develop drug delivery systems that bypass the blood–brain barrier (BBB) and prevent liver and intestinal degradation, it was concluded that nasal medication meets these criteria and can be used for drugs that have these drawbacks. The aim of this review is to present the influence of the properties of chitosan and its derivatives (mucoadhesion, permeability enhancement, surface tension, and zeta potential) on the development of suitable nasal drug delivery systems and on the nasal bioavailability of various active pharmaceutical ingredients. Interactions between chitosan and proteins, lipids, antigens, and other molecules lead to complexes that have their own applications or to changing characteristics of the substances involved in the bond (conformational changes, increased stability or solubility, etc.). Chitosan and its derivatives have their own actions (antibacterial, antifungal, immunostimulant, antioxidant, etc.) and can be used as such or in combination with other molecules from the same class to achieve a synergistic effect. The applicability of the properties is set out in the second part of the paper, where nasal formulations based on chitosan are described (vaccines, hydrogels, nanoparticles, nanostructured lipid carriers (NLC), powders, emulsions, etc.).


2017 ◽  
Vol 4 (2) ◽  
pp. 10 ◽  
Author(s):  
Harshil P. Shah ◽  
Shailesh T. Prajapati ◽  
C. N. Patel

Despite the extensive advancements in the field of drug delivery, the oral route remains the favorable route for administration of therapeutic actives. A success of oral controlled drug delivery systems is associated with reduced dosing frequency, decreased fluctuation in plasma drug concentration profile along with improved patient compliance. However, they are also associated with challenges like shorter gastric residence time, unpredictable gastric emptying and poor bioavailability for some molecules. This has initiated tremendous advancements in the field of gastro-retention to achieve controlled release of drugs along with improved bioavailability of drugs with narrow absorption window as well as localized action in the stomach and upper part of GIT. In present review, efforts have been envisaged to summarize our current understanding in the field of gastro-retention and their in vitro as well as in vivo characterization. Present review also highlights commercially utilized gastro-retentive technologies and some recently granted US patents in the field of GRDDS.


Sign in / Sign up

Export Citation Format

Share Document