scholarly journals Energy and Economic Comparison of Different Fuels in Cement Production

2021 ◽  
Author(s):  
Oluwafemi M. Fadayini ◽  
Clement Madu ◽  
Taiwo T. Oshin ◽  
Adekunle A. Obisanya ◽  
Gloria O. Ajiboye ◽  
...  

Cement clinkerisation is the major energy-consuming process in cement manufacturing due to the high-temperature requirement. In this paper, energy data including specific energy consumption, forms, and types of energy used at different units of cement manufacturing processes were analyzed and compared for effectiveness, availability, cost, environmental, and health impact. Data from three different cement industries in Nigeria labeled as A, B, and C were used for the analysis in this study. The results of this research work established that coal is the cheapest energy source but environmental issues exonerate it from being the choice energy source. LPFO and Natural gas give better production output while minimizing pollution and health issues. When benchmarked against each other, Factory B was found to be the most energy-efficient in terms of output and cost of production. Although coal is cheaper compared to fuel oil and supposed to contribute a share of fuel used in cement industries, the industries are moving towards the use of alternative and conventional fuels to reduce environmental pollution. It is therefore recommended that deliberate effort to achieve appreciable energy-efficient levels should be the priorities of the cement industries in Nigeria.

Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


2020 ◽  
Vol 5 (1) ◽  
pp. 563-572
Author(s):  
Iman Golpour ◽  
Mohammad Kaveh ◽  
Reza Amiri Chayjan ◽  
Raquel P. F. Guiné

AbstractThis research work focused on the evaluation of energy and exergy in the convective drying of potato slices. Experiments were conducted at four air temperatures (40, 50, 60 and 70°C) and three air velocities (0.5, 1.0 and 1.5 m/s) in a convective dryer, with circulating heated air. Freshly harvested potatoes with initial moisture content (MC) of 79.9% wet basis were used in this research. The influence of temperature and air velocity was investigated in terms of energy and exergy (energy utilization [EU], energy utilization ratio [EUR], exergy losses and exergy efficiency). The calculations for energy and exergy were based on the first and second laws of thermodynamics. Results indicated that EU, EUR and exergy losses decreased along drying time, while exergy efficiency increased. The specific energy consumption (SEC) varied from 1.94 × 105 to 3.14 × 105 kJ/kg. The exergy loss varied in the range of 0.006 to 0.036 kJ/s and the maximum exergy efficiency obtained was 85.85% at 70°C and 0.5 m/s, while minimum exergy efficiency was 57.07% at 40°C and 1.5 m/s. Moreover, the values of exergetic improvement potential (IP) rate changed between 0.0016 and 0.0046 kJ/s and the highest value occurred for drying at 70°C and 1.5 m/s, whereas the lowest value was for 70°C and 0.5 m/s. As a result, this knowledge will allow the optimization of convective dryers, when operating for the drying of this food product or others, as well as choosing the most appropriate operating conditions that cause the reduction of energy consumption, irreversibilities and losses in the industrial convective drying processes.


2020 ◽  
Vol 31 (1) ◽  
pp. 120-122
Author(s):  
Hendry R. Sawe ◽  
Bruno F. Sunguya ◽  
Eligius F. Lyamuya

All too frequent, valuable research output and scholarly materials from expensively conducted research work in different parts of the world end up in research desks, academic libraries, and scientific journals. Muhimbili University of Health and Allied Science (MUHAS) through the Directorate of Research and Publications initiated a series of symposia that aim to disseminate the evidence generated by the researchers to the policy makers and the community. In two of the six conducted University-wide symposia in the last one year, MUHAS produced two important policy briefs summarizing the impact of MUHAS research in two important—though distinct areas of local and global health impact—Elimination of Mother to Child Transmission (EMTCT) of HIV, and Diarrhea diseases.


Webology ◽  
2021 ◽  
Vol 18 (05) ◽  
pp. 1226-1235
Author(s):  
Vasuki C ◽  
Dr. Kavitha S ◽  
Bhuvaneswari S

Wireless sensor networks are greatly utilized by various applications and environments to sense and transmit the data. As wireless sensor network doesn’t have any centralized architecture, there will be various issues occurs in the network such as data transmission failure, data security issues, energy resource limitation and so on. Various authors focused these issues and published different research works to resolve these issues. In this analysis work, energy efficient and secured data transmission techniques introduced by various authors has been discussed in detailed based on their working procedure and simulation methods. And also this research work provided the overall analysis of the research work based on merits and demerits and each and every technique discussed in the literature section. And also, this research work concluded with numerical evaluation between most recent works in terms of energy consumption and security level. This numerical evaluation is done in the NS2 simulation environment.


Author(s):  
Hamed Nabizadeh Rafsanjani

Detailed energy-use information of office buildings’ occupants is necessary to implement proper simulation/intervention techniques. However, acquiring accurate occupant-specific energy consumption in office buildings at low cost is currently a challenging task since existing intrusive load monitoring (ILM) technologies require a large capital investment to provide high-resolution electricity usage data for individual occupants. On the other hand, non-intrusive load monitoring (NILM) approaches have been proven as more cost effective and flexible approaches to provide energy-use information of individual appliances. Therefore, extending the concept of NILM to individual occupants would be beneficial. This paper proposes two occupancy-related energy-consuming features, delay interval and magnitude of power changes and evaluates their significances for extracting occupant-specific power changes in a non-intrusive manner. The proposed features were examined through implementing a logistic regression model as a predictor on aggregate energy load data collected from an office building. Hypotheses tests also confirmed that both features are statistically significant to non-intrusively derive individual occupants’ energy-use information. As the main contribution of this study, these features could be utilized in developing sophisticated NILM-based approaches to monitor individual occupant energy-consuming behavior.  


2022 ◽  
Vol 1048 ◽  
pp. 403-411
Author(s):  
A. Chithambar Ganesh ◽  
K. Mukilan ◽  
B.P.V. Srikar ◽  
L.V.S. Teja ◽  
K.S.V. Prasad ◽  
...  

Infrastructural developments are inevitable for the developing countries and hence the production of sustainable building materials is promoted worldwide. Sustainable development in the vicinity of tiles is bewildered for more than a decade. Production of conventional tiles such as cement concrete tiles, clay tiles and ceramic tiles is energy intensive approach and levies lot of strain over the adjunct ecosystem. On the other hand there are serious problems related to the disposal of flyash, Rice Husk Ash throughout the world. An approach has been taken to synthesis tiles based on these industrial byproducts as the base materials through Geopolymer technology. In this work, Geopolymer mortar after heat curing is applied as tiles. In this work, Flyash is replaced by Rice Husk Ash in various proportions such as 20, 40, 60, 80 and 100 percent. Tests such as workability, flatness, straightness, perpendicularity, water absorption, modulus of rupture and abrasion are conducted and fair results are obtained. This research also portrays the effect of Rise Husk Ash addition over the flyash based Geopolymer binder in the utility as tiles. The findings of this research work encourages the development of energy efficient tiles using industrial wastes. Keywords: Geopolymer, Rice Husk Ash, Tiles


2019 ◽  
Vol 130 ◽  
pp. 01009
Author(s):  
Fandi Dwiputra Suprianto ◽  
Willyanto Anggono ◽  
Teng Sutrisno ◽  
Daniel William Gunawan ◽  
Gabriel Jeremy Gotama

Fuel oil is one of the important parts to support daily activities. The demand for fuel oil is increasing every year. Therefore, the search for the latest energy source is continuously conducted. Carica papaya L. seed oil is investigated as a renewable energy source replacement part of petroleum diesel fuel. C. papaya seed oil obtained through the extraction process using soxhlet method with n-hexane solvent. Then produce methylester by means of transesterification using 1 % NaOH catalyst and 20 % methanol of the weight of the oil and stirred at 400 rpm for 1 h. A mixture consisting of 10 % C. papaya seed biodiesel and 90 % petroleum diesel fuel, called CPSB-10, produces fuel properties that meet the specified standards by the Indonesian Directorate General of Oil and Gas. From the result of the performance test in a diesel test engine, the maximum brake power and brake thermal are consecutively 30.6 kW and 140.23 N m, the lowest sfc is 268 g kW–1 h–1, and the highest brake thermal efficiency is 32 %.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. 786-791
Author(s):  
Xiaobo Yin ◽  
Ronggui Yang ◽  
Gang Tan ◽  
Shanhui Fan

Photonic materials designed at wavelength scales have enabled a range of emerging energy technologies, from solid-state lighting to efficient photovoltaics that have transformed global energy landscapes. Daytime passive radiative cooling materials shed heat from the ground to the cold universe by taking advantage of the terrestrial thermal radiation that is as large as the renewable solar energy. Newly developed photonic materials permit subambient cooling under direct sunshine, and their applications are expanding rapidly enabled by scalable manufacturing. We review here the recent advancement of daytime subambient radiative cooling materials, which allow energy-efficient cooling and are paving the way toward technologies that harvest the coldness from the universe as a new renewable energy source.


Buildings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 128
Author(s):  
Junxue Zhang ◽  
Ravi S. Srinivasan ◽  
Changhai Peng

The Chinese cement industry produced 2150 million metric tons of cement in 2014, accounting for 58.1% of the world’s total. This industry has a hugely destructive effect on the environment owing to its pollution. The environmental impact of cement manufacturing is a major concern for China. Although researchers have attempted to estimate impacts using life cycle assessment approaches, it lacks the ability to provide a holistic evaluation of the impacts on the environment. Emergy analysis, through ecological accounting, offers environmental decision making using elaborate book keeping. In spite of the high environmental impact of the cement industry, there has only been a handful of research work done to compute the unit emergy values (UEVs) of cement manufacturing in China. A thorough study of existing UEVs of cement manufacturing in China showed pitfalls that may lead to inaccurate estimations if used in emergy analysis. There is a strong need for a new, updated UEV for cement manufacturing in China, particularly reflecting both the dry and wet raw materials in the manufacturing process. This paper develops a methodology to calculate the nonrenewable resources used in cement manufacturing, particularly using mainstream cement production line. Our systematic approach-based UEV estimates of cement manufacturing in China using the quota method are 2.56 × 1012 sej/kg (wet material) and 2.46 × 1012 sej/kg (dry material). Emergy indicators such as environmental loading ratios which were calculated at 2390 (wet material) and 2300 (dry material); emergy yield ratios at 15.7 and 15.8; and emergy sustainability indices at 0.0066 and 0.0069 for dry and wet materials used in cement manufacturing, respectively; these show the immense impact on the environment in China.


Sign in / Sign up

Export Citation Format

Share Document