scholarly journals The Z-Disk Final Common Pathway in Cardiomyopathies

2021 ◽  
Author(s):  
Enkhsaikhan Purevjav ◽  
Jeffrey A. Towbin

The sarcomeres represent the essential contractile units of the cardiac myocyte and are bordered by two Z-lines (disks) that are made by various proteins. The cardiac Z-disk is recognized as one of the nodal points in cardiomyocyte structural organization, mechano-sensation and signal transduction. Rapid progress in molecular and cellular biology has significantly improved the knowledge about pathogenic mechanisms and signaling pathways involved in the development of inherited cardiomyopathies. Genetic insult resulting in expression of mutated proteins that maintain the structure of the heart can perturb cardiac function. The primary mutation in the cardiac contractile apparatus or other subcellular complexes can lead to cardiac pathology on a tissue level, resulting in organ and organism level pathophysiology. The “final common pathway” hypothesis interpreting the genetic basis and molecular mechanisms involved in the development of cardiomyopathies suggests that mutations in cardiac genes encoding proteins with similar structure, function, or location and operating in the same pathway, are responsible for a particular phenotype of cardiomyopathy with unique morpho-histological remodeling of the heart. This chapter will describe genetic abnormalities of cardiac Z-disk and related “final common pathways” that are triggered by a Z-disk genetic insult leading to heart muscle diseases. In addition, animal models carrying mutations in Z-disk proteins will be described.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shai Abehsera ◽  
Shmuel Bentov ◽  
Xuguang Li ◽  
Simy Weil ◽  
Rivka Manor ◽  
...  

AbstractDuring their life, crustaceans undergo several molts, which if theoretically compared to the human body would be equivalent to replacing all bones at a single event. Such a dramatic repetitive event is coupled to unique molecular mechanisms of mineralization so far mostly unknown. Unlike human bone mineralized with calcium phosphate, the crustacean exoskeleton is mineralized mainly by calcium carbonate. Crustacean growth thus necessitates well-timed mobilization of bicarbonate to specific extracellular sites of biomineralization at distinct molt cycle stages. Here, by looking at the crayfish Cherax quadricarinatus at different molting stages, we suggest that the mechanisms of bicarbonate ion transport for mineralization in crustaceans involve the SLC4 family of transporters and that these proteins play a key role in the tight coupling between molt cycle events and mineral deposition. This discovery of putative bicarbonate transporters in a pancrustacean with functional genomic evidence from genes encoding the SLC4 family—mostly known for their role in pH control—is discussed in the context of the evolution of calcium carbonate biomineralization.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 782
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Myung Geun Ji ◽  
Gyeong-Im Shin ◽  
Song Yi Jeong ◽  
...  

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Author(s):  
Guohong Zeng ◽  
Jin Li ◽  
Yuxiu Ma ◽  
Qian Pu ◽  
Tian Xiao ◽  
...  

AbstractSaponins are kinds of antifungal compounds produced by Panax notoginseng to resist invasion by pathogens. Ilyonectria mors-panacis G3B was the dominant pathogen inducing root rot of P. notoginseng, and the abilities to detoxify saponins were the key to infect P. notoginseng successfully. To research the molecular mechanisms of detoxifying saponins in I. mors-panacis G3B, we used high-throughput RNA-Seq to identify 557 and 1519 differential expression genes (DEGs) in I. mors-panacis G3B with saponins treatments for 4H (Hours) and 12H (Hours) compared with no saponins treatments, respectively. Among these DEGs, we found 93 genes which were simultaneously highly expressed in I. mors-panacis G3B with saponins treatments for 4H and 12H, they mainly belong to genes encoding transporters, glycoside hydrolases, oxidation–reduction enzymes, transcription factors and so on. In addition, there were 21 putative PHI (Pathogen–Host Interaction) genes out of those 93 up-regulated genes. In this report, we analyzed virulence-associated genes in I. mors-panacis G3B which may be related to detoxifying saponins to infect P. notoginseng successfully. They provided an excellent starting point for in-depth study on pathogenicity of I. mors-panacis G3B and developed appropriate root rot disease management strategies in the future.


1995 ◽  
Vol 11 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Jerry Avorn

AbstractThere is an informational void about Pharmaceuticals in the training of most doctors, despite the importance of the prescription in medical care. The writing of the prescription is the final common pathway in therapeutic decision making, which involves such diverse forces and disciplines as anthropology, decision science, health economics, ethics, and politics, as well as pharmacology and clinical medicine. Programs to improve the precision and cost-effectiveness of doctors' prescribing must consider all of these factors if pharmacotherapeutics are to be used optimally.


2020 ◽  
Vol 15 (1) ◽  
pp. 753-762
Author(s):  
Delong Kan ◽  
Di Zhao ◽  
Pengfei Duan

AbstractStudies have shown that abundant and various flavonoids accumulate in chili pepper (Capsicum), but there are few reports on the genes that govern chili pepper flavonoid biosynthesis. Here, we report the comprehensive identification of genes encoding type III polyketide synthase (PKS), an important enzyme catalyzing the generation of flavonoid backbones. In total, 13, 14 and 13 type III PKS genes were identified in each genome of C. annuum, C. chinense and C. baccatum, respectively. The phylogeny topology of Capsicum PKSs is similar to those in other plants, as it showed two classes of genes. Within each class, clades can be further identified. Class II genes likely encode chalcone synthase (CHS) as they are placed together with the Arabidopsis CHS gene, which experienced extensive expansions in the genomes of Capsicum. Interestingly, 8 of the 11 Class II genes form three clusters in the genome of C. annuum, which is likely the result of tandem duplication events. Four genes are not expressed in the tissues of C. annuum, three of which are located in the clusters, indicating that a portion of genes was pseudogenized after tandem duplications. Expression of two Class I genes was complementary to each other, and all the genes in Class II were not expressed in roots of C. annuum. Two Class II genes (CA00g90790 and CA05g17060) showed upregulated expression as the chili pepper leaves matured, and two Class II genes (CA05g17060 and CA12g20070) showed downregulated expression with the maturation of fruits, consistent with flavonoid accumulation trends in chili pepper as reported previously. The identified genes, sequences, phylogeny and expression information collected in this article lay the groundwork for future studies on the molecular mechanisms of chili pepper flavonoid metabolism.


Gene ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 271-275 ◽  
Author(s):  
Barbara A. Hendrickson ◽  
Wei Zhang ◽  
Robert J. Craig ◽  
Jin Yong-Jiu ◽  
Barbara E. Bierer ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3975 ◽  
Author(s):  
Yurii Borovikov ◽  
Olga Karpicheva ◽  
Armen Simonyan ◽  
Stanislava Avrova ◽  
Elena Rogozovets ◽  
...  

Point mutations in genes encoding isoforms of skeletal muscle tropomyosin may cause nemaline myopathy, cap myopathy (Cap), congenital fiber-type disproportion (CFTD), and distal arthrogryposis. The molecular mechanisms of muscle dysfunction in these diseases remain unclear. We studied the effect of the E173A, R90P, E150A, and A155T myopathy-causing substitutions in γ-tropomyosin (Tpm3.12) on the position of tropomyosin in thin filaments, and the conformational state of actin monomers and myosin heads at different stages of the ATPase cycle using polarized fluorescence microscopy. The E173A, R90P, and E150A mutations produced abnormally large displacement of tropomyosin to the inner domains of actin and an increase in the number of myosin heads in strong-binding state at low and high Ca2+, which is characteristic of CFTD. On the contrary, the A155T mutation caused a decrease in the amount of such heads at high Ca2+ which is typical for mutations associated with Cap. An increase in the number of the myosin heads in strong-binding state at low Ca2+ was observed for all mutations associated with high Ca2+-sensitivity. Comparison between the typical conformational changes in mutant proteins associated with different myopathies observed with α-, β-, and γ-tropomyosins demonstrated the possibility of using such changes as tests for identifying the diseases.


2018 ◽  
Vol 9 ◽  
Author(s):  
Alexandrina Ferreira Mendes ◽  
Maria Teresa Cruz ◽  
Oreste Gualillo

Sign in / Sign up

Export Citation Format

Share Document