scholarly journals Modulations in Oxidative Stress of Erythrocytes during Bacterial and Viral Infections

2021 ◽  
Author(s):  
Vani Rajashekaraiah ◽  
Carl Hsieh ◽  
Masannagari Pallavi

Oxidative stress (OS) occurs when the generation of free radicals and reactive oxygen species (ROS) overwhelms the antioxidant capacity. OS causes storage lesions which can be defined as a series of biochemical and biomechanical changes. Erythrocytes are constantly exposed to OS due to the presence of ROS, which are countered by the endogenous antioxidant system. Various irreversible changes that occur include fragmentation and aggregation of proteins and lipids. The changes in proteins, lipids and antioxidant capacity are used as OS biomarkers to assess the efficacy of the erythrocytes, post oxidative insult. Aging of erythrocytes is also associated with the changes in its physical, biochemical and physiological properties and OS causes its rapid aging. Bacterial and viral infections also cause OS which alters the erythrocytes’ antioxidant capacity. These modulations in its microenvironment are both beneficial in terms of protection against invading microorganisms as well as harmful to the erythrocytes, causing damage to surrounding cells and tissues. Thus, OS biomarkers can be used to gain insights into the effects of bacterial and viral infections on the erythrocyte microenvironment.

2017 ◽  
Vol 03 ◽  
pp. 66 ◽  
Author(s):  
Ka�s Rtibi ◽  
Mohamed Amri ◽  
Hichem Sebai ◽  
Lamjed Marzouki ◽  
◽  
...  

Diarrhea pathophysiology and constipation are multifactorial gastrointestinal (GI) disorders characterized by intestinal peristalsis disruption of and an irregularity in secretion/absorption process. Oxidative stress, as an imbalance in prooxidants/antioxidants, has recently been recognized as a significant player in these GI disturbances. In this respect, numerous studies were performed and have shown that the deleterious effects on GI tract were accompanied by accumulation of oxidants and depletion of antioxidant system. Antioxidant remedy is necessary in scavenging free radicals and reactive oxygen species preventing oxidative stress-induced GI interruptions.


2019 ◽  
Vol 22 (7) ◽  
pp. 496-501
Author(s):  
Fatemeh Ahmadi-Motamayel ◽  
Parisa Falsafi ◽  
Hamidreza Abolsamadi ◽  
Mohammad T. Goodarzi ◽  
Jalal Poorolajal

Background: Cigarette smoke free radicals can cause cellular damage and different diseases. All the body fluids have antioxidants which protect against free radicals. Objective: The aim of this study was to evaluate salivary total antioxidant capacity and peroxidase, uric acid and malondialdehyde levels in smokers and a nonsmoking control group. Methods: Unstimulated saliva was collected from 510 males. A total of 259 subjects were current smokers and 251 were non-smokers. The levels of salivary total antioxidant capacity, uric acid, peroxidase and malondialdehyde were measured using standard procedures. Data were analyzed with t test and ANOVA. Results: The smokers were younger and dental hygiene index was higher than healthy nonsmoking controls. The mean total antioxidant capacity in smokers and nonsmokers was 0.13±0.07 and 0.21±011, respectively (P=0.001). Smokers had significantly lower peroxidase and uric acid levels than healthy controls. In addition, the mean malondialdehyde levels in the smokers and nonsmokers were 4.55 ±2.61 and 2.79 ±2.21, respectively (P=0.001). Conclusion: Cigarette smoke produces free radical and oxidative stress, causing many side effects. Salivary antioxidant levels decreased and malondialdehyde levels increased in smokers, indicating the high oxidative stress among smokers compared to nonsmokers. Cigarette smoke had deleterious effects on main salivary antioxidants levels.


Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 3855-3863 ◽  
Author(s):  
Namrata Singh ◽  
Mohammed Azharuddin Savanur ◽  
Shubhi Srivastava ◽  
Patrick D'Silva ◽  
Govindasamy Mugesh

Multi-enzyme mimetic Mn3O4 nanoflowers (Mp) modulate the redox state of mammalian cells without altering the cellular antioxidant machinery under oxidative stress conditions.


2020 ◽  
Vol 2020 (4) ◽  
pp. 10-18
Author(s):  
Dmitriy Gildikov

In the review article, from the modern standpoint, oxidative stress is considered as a universal pathophysiological mechanism of the vast majority of diseases in animals. A brief review of the publication activity in the world on this topic; the significance of reactive oxygen species in the physiology and development of intracellular oxidative stress, the role of etiological factors that initiate their hyperproduction are presented, as well the methods of detecting oxidative stress are characterizited. General concepts of the antioxidant system of the animal body are examined, and the pathophysiological targets of oxidative stress in animals are generalized.


Author(s):  
Abishek B. Santhakumar ◽  
Indu Singh

In the recent years, there has been a great deal of attention in investigating the disease preventive properties of functional foods. Particularly, impact of the antioxidant property of functional foods in reducing the risk or progression of chronic diseases has gained considerable interest amongst researchers and practitioners. Free radicals such as reactive oxygen species are generated in the body by exposure to a number of physiochemical or pathological mechanisms. It is imperative to preserve a balance between the levels of free radicals and antioxidants for routine physiological function, a disparity of which would accelerate oxidative stress. Increased oxidative stress and associated consequences in metabolic disorders such as obesity, cardiovascular diseases and diabetes has warranted the need for exogenous antioxidant concentrates derived from natural foods to alleviate the adverse effects. This chapter provides an overview on the efficacy of functional foods in reducing free radical-mediated damage in metabolic syndrome.


2002 ◽  
Vol 11 (6) ◽  
pp. 543-551 ◽  
Author(s):  
Caryl Goodyear-Bruch ◽  
Janet D. Pierce

Oxygen-derived free radicals play an important role in the development of disease in critically ill patients. Normally, oxygen free radicals are neutralized by antioxidants such as vitamin E or enzymes such as superoxide dismutase. However, in patients who require intensive care, oxygen free radicals become a problem when either a decrease in the removal or an overproduction of the radicals occurs. This oxidative stress and the damage due to it have been implicated in many diseases in critically ill patients. Many drugs and treatments now being investigated are directed toward preventing the damage from oxidative stress. The formation of reactive oxygen species, the damage caused by them, and the body’s defense system against them are reviewed. New interventions are described that may be used in critically ill patients to prevent or treat oxidative damage.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Cestmir Cejka ◽  
Jan Kossl ◽  
Vladimir Holan ◽  
John H. Zhang ◽  
Jitka Cejkova

Corneal alkali burns are potentially blinding injuries. Alkali induces oxidative stress in corneas followed by excessive corneal inflammation, neovascularization, and untransparent scar formation. Molecular hydrogen (H2), a potent reactive oxygen species (ROS) scavenger, suppresses oxidative stress and enables corneal healing when applied on the corneal surface. The purpose of this study was to examine whether the H2 pretreatment of healthy corneas evokes a protective effect against corneal alkali-induced oxidative stress. Rabbit eyes were pretreated with a H2 solution or buffer solution, by drops onto the ocular surface, and the corneas were then burned with 0.25 M NaOH. The results obtained with immunohistochemistry and pachymetry showed that in the corneas of H2-pretreated eyes, slight oxidative stress appeared followed by an increased expression of antioxidant enzymes. When these corneas were postburned with alkali, the alkali-induced oxidative stress was suppressed. This was in contrast to postburned buffer-pretreated corneas, where the oxidative stress was strong. These corneas healed with scar formation and neovascularization, whereas corneas of H2-pretreated eyes healed with restoration of transparency in the majority of cases. Corneal neovascularization was strongly suppressed. Our results suggest that the corneal alkali-induced oxidative stress was reduced via the increased antioxidant capacity of corneal cells against reactive oxygen species (ROS). It is further suggested that the ability of H2 to induce the increase in antioxidant cell capacity is important for eye protection against various diseases or external influences associated with ROS production.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
Flávia Póvoa da Costa ◽  
Bruna Puty ◽  
Lygia S. Nogueira ◽  
Geovanni Pereira Mitre ◽  
Sávio Monteiro dos Santos ◽  
...  

Piceatannol is a resveratrol metabolite that is considered a potent antioxidant and cytoprotector because of its high capacity to chelate/sequester reactive oxygen species. In pathogenesis of periodontal diseases, the imbalance of reactive oxygen species is closely related to the disorder in the cells and may cause changes in cellular metabolism and mitochondrial activity, which is implicated in oxidative stress status or even in cell death. In this way, this study aimed to evaluate piceatannol as cytoprotector in culture of human periodontal ligament fibroblasts through in vitro analyses of cell viability and oxidative stress parameters after oxidative stress induced as an injury simulator. Fibroblasts were seeded and divided into the following study groups: control, vehicle, control piceatannol, H2O2 exposure, and H2O2 exposure combined with the maintenance in piceatannol ranging from 0.1 to 20 μM. The parameters analyzed following exposure were cell viability by trypan blue exclusion test, general metabolism status by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method, mitochondrial activity through the ATP production, total antioxidant capacity, and reduced gluthatione. Piceatannol was shown to be cytoprotective due the maintenance of cell viability between 1 and 10 μM even in the presence of H2O2. In a concentration of 0.1 μM piceatannol decreased significantly cell viability but increased cellular metabolism and antioxidant capacity of the fibroblasts. On the other hand, the fibroblasts treated with piceatannol at 1 μM presented low metabolism and antioxidant capacity. However, piceatannol did not protect cells from mitochondrial damage as measured by ATP production. In summary, piceatannol is a potent antioxidant in low concentrations with cytoprotective capacity, but it does not prevent all damage caused by hydrogen peroxide.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 101 ◽  
Author(s):  
Andrey Y. Abramov ◽  
Elena V. Potapova ◽  
Viktor V. Dremin ◽  
Andrey V. Dunaev

Aggregation of the misfolded proteins β-amyloid, tau, huntingtin, and α-synuclein is one of the most important steps in the pathology underlying a wide spectrum of neurodegenerative disorders, including the two most common ones—Alzheimer’s and Parkinson’s disease. Activity and toxicity of these proteins depends on the stage and form of aggregates. Excessive production of free radicals, including reactive oxygen species which lead to oxidative stress, is proven to be involved in the mechanism of pathology in most of neurodegenerative disorders. Both reactive oxygen species and misfolded proteins play a physiological role in the brain, and only deregulation in redox state and aggregation of the proteins leads to pathology. Here, we review the role of misfolded proteins in the activation of ROS production from various sources in neurons and glia. We discuss if free radicals can influence structural changes of the key toxic intermediates and describe the putative mechanisms by which oxidative stress and oligomers may cause neuronal death.


2020 ◽  
Vol 71 (5) ◽  
pp. 450-461
Author(s):  
Maria Iuliana Gruia ◽  
Serban Marinescu ◽  
Dragos Predescu ◽  
George Jinescu ◽  
Bogdan Socea ◽  
...  

Colorectal cancer (CRC) is one of the most common human malignancies, affecting one of 20 persons in areas with high socio-economic standard. In Romania, the frequency of colorectal cancer is growing rapidly placing the country among countries with an average incidence of the disease. There are some etiologic factors involved and treatment of disease is carried out after proper staging. Biochemical mechanisms underlying malignant transformation in colorectal cancer are not all fully understood, therefore our work trying to enter in the path of oxygen metabolism at patients surgically treated. The aim of the study is to follow the production of active metabolites of oxygen, in the dynamics of the surgical procedure, and how the endogenous natural protection systems are activated, following the invasive procedure. Oxidative stress biochemistry assays, realized before and after surgical excision showed a direct relationship between the production of reactive oxygen species and the presence of tumor, without being able to distinguish exactly if malignant tissue is able to induce oxidative stress, or the latter occurs due to neoplastic changes. Based on the results we can say with certainty that the reactive oxygen species ROS primary attack occurs in the lipids, and then the proteins, following activation of endogenous antioxidant defence.


Sign in / Sign up

Export Citation Format

Share Document