scholarly journals Roles of Glucose and Sucrose Intakes on the Brain Functions Measured by the Working Ability and Morris Maze

2021 ◽  
Author(s):  
Akikazu Takada ◽  
Fumiko Shimizu ◽  
Yukie Ishii ◽  
M. Ogawa ◽  
Tetsuya Takao

Sugars such as glucose or sucrose are considered hazardous foods because their intakes lead to obesity, further causing diabetes mellitus (DM), or cardiovascular diseases. However, glucose is needed for many brain functions such as memory and emotion among others. Glucose induces the secretion of insulin, which is needed for transportation of tryptophan from the blood to the brain. Serotonin, which is converted from tryptophan, is important for mood stability, control of emotion, and feeding is inhibited by serotonin in the hypothalamus. We discuss transportation of glucose from the blood to the glia cells. After glycolysis of glucose in the glia lactic acid is transported to cells such as glutaminergic neurons. After the release from neurons glutamic acid is taken up into glia cells and further to neurons again. Sucrose is degraded into glucose and fructose in the intestine thus intake of sucrose increases plasma levels of glucose. We show that intake of sucrose enhanced memory measured by Morris maze in rats and improved the working ability in humans. Roles of glucose and sucrose intakes are discussed together with the function of serotonin in feeding.

1989 ◽  
Vol 61 (01) ◽  
pp. 150-151 ◽  
Author(s):  
R Musso ◽  
A Longo ◽  
R R Cacciola ◽  
A Lombardo ◽  
R Giustolisi ◽  
...  

1996 ◽  
Vol 76 (03) ◽  
pp. 328-332 ◽  
Author(s):  
Bernd Jilma ◽  
Peter Fasching ◽  
Christine Ruthner ◽  
Anna Rumplmayr ◽  
Sabine Ruzicka ◽  
...  

SummaryBased on findings that showed increased P-selectin expression on platelets and on choroidal microvessels of patients with insulin dependent diabetes mellitus (IDDM), we hypothesized that also plasma concentrations of circulating (c)P-selectin would be increased in these patients.The aim of this study was to compare the plasma levels of cP-selec-tin between non-smoking patients with IDDM, treated with an intensified insulin therapy, and healthy controls. The study design was prospective, cross-sectional and analyst-blinded. Subjects were matched individually for sex, age and body mass index. Plasma levels of cP-selectin and of von Willebrand antigen (vWF-Ag) were determined by enzyme linked immunoassays.Forty-two pairs were available for intergroup comparison. Median plasma concentrations of cP-selectin in patients with IDDM (285 ng/ml; interquartile range: 233-372) were on average 21% higher than those of controls (236 ng/ml; interquartile range: 175-296; p = 0.004). Also, median plasma levels of vWF-Ag were 10% higher in patients (96 U/dl; interquartile range: 82-127) than controls (87 U/dl; interquartile range: 70-104; p = 0.025). There was no correlation between plasma concentrations of cP-selectin and vWF-Ag levels in either group (p ώ0.05).In conclusion, our results of increased cP-selectin levels are in line with increased P-selectin expression on platelets and on choroidal microvessels found in patients with IDDM. In view of the currently developed small molecule inhibitors of cell adhesion molecules, these independent observations together may provide a sound rationale to select P-selectin as a target for treating or preventing IDDM-associated micro- or macrovascular complications.


1984 ◽  
Vol 52 (03) ◽  
pp. 236-239 ◽  
Author(s):  
J Fritschi ◽  
M Christe ◽  
B Lämmle ◽  
G A Marbet ◽  
W Berger ◽  
...  

SummaryWe have studied 155 subjects, 48 normals, 36 diabetics without complications, 44 with complications and 27 patients with macroangiopathy. β-Thromboglobulin (β-TG) and platelet factor 4 (PF4) are elevated in the patients groups. There is no correlation between the plasma levels of β-TG and the stages of either retinopathy or macroangiopathy or nephropathy. The difference is more marked between normals and diabetics with neuropathy (p = 0.026). The aggregation response to ADP and platelet activating factor (PAF) is enhanced at lower stimulator concentration. Using the β-TG, PF4 and aggregation values the discriminant analysis allows a distinction of several subgroups especially with nephropathy and neuropathy (Table 6).


1970 ◽  
Vol 6 (1) ◽  
Author(s):  
Muskinul Fuad

The education system in Indonesia emphasize on academic intelligence, whichincludes only two or three aspects, more than on the other aspects of intelligence. For thatreason, many children who are not good at academic intelligence, but have good potentials inother aspects of intelligence, do not develop optimally. They are often considered and labeledas "stupid children" by the existing system. This phenomenon is on the contrary to the theoryof multiple intelligences proposed by Howard Gardner, who argues that intelligence is theability to solve various problems in life and produce products or services that are useful invarious aspects of life.Human intelligence is a combination of various general and specific abilities. Thistheory is different from the concept of IQ (intelligence quotient) that involves only languageskills, mathematical, and spatial logics. According to Gardner, there are nine aspects ofintelligence and its potential indicators to be developed by each child born without a braindefect. What Gardner suggested can be considered as a starting point to a perspective thatevery child has a unique individual intelligence. Parents have to treat and educate theirchildren proportionally and equitably. This treatment will lead to a pattern of education that isfriendly to the brain and to the plurality of children’s potential.More than the above points, the notion that multiple intelligences do not just comefrom the brain needs to be followed. Humans actually have different immaterial (spiritual)aspects that do not refer to brain functions. The belief in spiritual aspects and its potentialsmeans that human beings have various capacities and they differ from physical capacities.This is what needs to be addressed from the perspective of education today. The philosophyand perspective on education of the educators, education stakeholders, and especially parents,are the first major issue to be addressed. With this step, every educational activity andcommunication within the family is expected to develop every aspect of children'sintelligence, especially the spiritual intelligence.


2019 ◽  
Vol 25 (23) ◽  
pp. 2555-2568 ◽  
Author(s):  
Rajeev Taliyan ◽  
Sarathlal K. Chandran ◽  
Violina Kakoty

Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer’s Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.


2020 ◽  
Vol 16 ◽  
Author(s):  
Patricio Lopez-Jaramillo ◽  
Jose Lopez-Lopez ◽  
Daniel Cohen ◽  
Natalia Alarcon-Ariza ◽  
Margarita Mogollon-Zehr

: Hypertension and type 2 diabetes mellitus are two important risk factors that contribute to cardiovascular diseases worldwide. In Latin America hypertension prevalence varies from 30 to 50%. Moreover, the proportion of awareness, treatment and control of hypertension is very low. The prevalence of type 2 diabetes mellitus varies from 8 to 13% and near to 40% are unaware of their condition. In addition, the prevalence of prediabetes varies from 6 to 14% and this condition has been also associated with increased risk of cardiovascular diseases. The principal factors linked to a higher risk of hypertension in Latin America are increased adiposity, low muscle strength, unhealthy diet, low physical activity and low education. Besides being chronic conditions, leading causes of cardiovascular mortality, both hypertension and type 2 diabetes mellitus represent a substantial cost for the weak health systems of Latin American countries. Therefore, is necessary to implement and reinforce public health programs to improve awareness, treatment and control of hypertension and type 2 diabetes mellitus, in order to reach the mandate of the Unit Nations of decrease the premature mortality for CVD.


2021 ◽  
Vol 22 (3) ◽  
pp. 1059
Author(s):  
Bodo C. Melnik

Epidemiological studies associate milk consumption with an increased risk of Parkinson’s disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1311
Author(s):  
Faraz Ahmad ◽  
Ping Liu

Lead (Pb) neurotoxicity is a major concern, particularly in children. Developmental exposure to Pb can alter neurodevelopmental trajectory and has permanent neuropathological consequences, including an increased vulnerability to further stressors. Ascorbic acid is among most researched antioxidant nutrients and has a special role in maintaining redox homeostasis in physiological and physio-pathological brain states. Furthermore, because of its capacity to chelate metal ions, ascorbic acid may particularly serve as a potent therapeutic agent in Pb poisoning. The present review first discusses the major consequences of Pb exposure in children and then proceeds to present evidence from human and animal studies for ascorbic acid as an efficient ameliorative supplemental nutrient in Pb poisoning, with a particular focus on developmental Pb neurotoxicity. In doing so, it is hoped that there is a revitalization for further research on understanding the brain functions of this essential, safe, and readily available vitamin in physiological states, as well to justify and establish it as an effective neuroprotective and modulatory factor in the pathologies of the nervous system, including developmental neuropathologies.


2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

Injuries and hidden dangers in training have a greater impact on athletes ’careers. In particular, the brain function that controls the motor function area has a greater impact on the athlete ’s competitive ability. Based on this, it is necessary to adopt scientific methods to recognize brain functions. In this paper, we study the structure of motor brain-computer and improve it based on traditional methods. Moreover, supported by machine learning and SVM technology, this study uses a DSP filter to convert the preprocessed EEG signal X into a time series, and adjusts the distance between the time series to classify the data. In order to solve the inconsistency of DSP algorithms, a multi-layer joint learning framework based on logistic regression model is proposed, and a brain-machine interface system of sports based on machine learning and SVM is constructed. In addition, this study designed a control experiment to improve the performance of the method proposed by this study. The research results show that the method in this paper has a certain practical effect and can be applied to sports.


Sign in / Sign up

Export Citation Format

Share Document