scholarly journals Neuroprotective potential of Aframomum melegueta extracts on brain of monosodium glutamate-treated wistar albino rats

2017 ◽  
Vol 9 (2) ◽  
pp. 16-27
Author(s):  
O. W. Fasakin ◽  
A. O. Fajobi ◽  
O. O. Oyedapo
Author(s):  
SURENDRA BABU THANGACHI ◽  
VARSHA SRIRAM MOKHASI ◽  
SHABINA KOMATH CHENOLY

Objective: The objective of this study was to determine if there were any harmful effects of monosodium glutamate (MSG) on the liver of Wistar albino rats chronically at three different doses, namely, low, mid, and high doses equivalent to human consumption doses in developing countries. Methods: The Wistar albino rats (n=24) were divided into four groups, namely control, Low dose MSG (180 mg/kg), Mid dose MSG (360 mg/kg), and High dose MSG (720 mg/kg). At the end of the experimental period (120 days), animal blood was collected retro-orbitally to analyze the liver enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), Total protein, Albumin, and Total Bilirubin in blood serum. Lipid profiles, namely, Triglycerides, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and Total cholesterol were subjected to analysis using blood serum. Results: Significant increase (p<0.05) in AST, ALT, ALP, and total bilirubin in serum of MSG induced low, mid, and high dose groups when compared to control group were recorded. There was a significant increase (p<0.05) in LDL, decrease in HDL, increase in total cholesterol and triglycerides of MSG-induced animal groups. Conclusion: The effects of MSG on serum liver enzymes and lipid profiles in this present animal study were not severely alarming even though the dosage was chronic which opens further discussion on the controversies revolving around MSG.


Author(s):  
VENKATESH KM ◽  
SRIRAM BS ◽  
RAVICHANDRA V ◽  
RAJENDRA HOLLA

Objectives: The objectives of this study were to evaluate the effects of telmisartan on plasma interleukin (IL)-6 and C-reactive protein (CRP) levels in monosodium glutamate (MSG)-induced obesity in Wistar albino rats. Methods: MSG at the dose of 500 mg/kg body weight is dissolved in distilled water and administered for 22 days. On the 9th day, telmisartan 7.5 mg/kg body weight is administered. After completion of experiment, body weight and biochemical parameters such as plasma IL-6 and CRP levels are measured using enzyme-linked immunosorbent assay. Results: Telmisartan significantly decreased plasma IL-6 and CRP levels in MSG-treated obese rats. Conclusion: Telmisartan, probably through its peroxisome proliferator-activated receptor-γ agonistic activity, produces significant anti-obesity effects in rats and may help in treating obese patients with metabolic syndrome.


BMC Urology ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Dalia F. El Agamy ◽  
Yahya M. Naguib

Abstract Background Competent detrusor muscles with coordinated contraction and relaxation are crucial for normal urinary bladder storage and emptying functions. Hence, detrusor instability, and subsequently bladder overactivity, may lead to undesirable outcomes including incontinence. Multiple mechanisms may underlie the pathogenesis of detrusor overactivity including inflammation and oxidative stress. Herein, we tested the possibility that CoQ10 may have a potential therapeutic role in detrusor overactivity. Methods Forty adult male Wistar albino rats weighing 100-150 g were used in the present study. Rats were divided (10/group) into control (receiving vehicles), monosodium glutamate (MSG)-treated (receiving 5 mg/kg MSG daily for 15 consecutive days), MSG + OO-treated (receiving concomitantly 5 mg/kg MSG and olive oil for 15 consecutive days), MSG + CoQ10-treated (receiving concomitantly 5 mg/kg MSG and 100 mg/kg CoQ10 daily for 15 consecutive days) groups. Results MSG resulted in significant increase in bladder weight and sensitised the bladder smooth muscles to acetylcholine. MSG has also resulted in significant increase in bladder TNF-α, IL-6, malondialdehyde, nerve growth factor and connexion 43, with significant decrease in the antioxidant enzymes superoxide dismutase and catalase. Olive oil had no effect on MSG induced alterations of different parameters. Treatment with CoQ10 has resulted in a significant restoration of all the altered parameters. Conclusion Taken together, our results suggest that CoQ10 antagonizes the deleterious effects of MSG on detrusor activity. We propose that CoQ10 could be a therapeutic strategy targeting urinary bladder dysfunction.


2019 ◽  
Vol 12 (2) ◽  
pp. 527-532
Author(s):  
Eman R. Youness ◽  
Jihan S. Hussein ◽  
Amr M. M. Ibrahim ◽  
Fatma E. Agha

Monosodium glutamate (MSG) is immensely globally used as a food aroma and additive, several studies indicated its toxicity in different body organs. Here, we aimed to evaluate brain dysfunctions in experimental animal that administered MSG and appreciate the beneficial role of flaxseed oil in attenuating this effect. In this study, forty male Wistar albino rats were divided into four groups; control, flaxseed oil, MSG and treated groups. Kidney and liver functions were estimated, malondialdehyde (MDA) and paraoxonase (PON1) were measured by colorimetric methods. Blood fatty acids and neurotransmitters parameters were estimated by HPLC. Our results revealed that MSG administration significantly increased oxidative stress and omega-6 fatty acids and decreased brain neurotransmitters as well as omega-3 fatty acids (ω-3 FA). Whereas treatment with flaxseed oil significantly attenuated all these disadvantages. The results of this study indicated that MSG was responsible for brain dysfunction that appeared in disturbances of neurotransmitters levels. In addition , the administration of omega-3 fatty acids in treated group effectively attenuated this dysfunctions through replacing omega-6 fatty acids in the neurocells by omega-3 fatty acids that represent in our study by flaxseed oil.


Author(s):  
SURENDRA BABU THANGACHI ◽  
VARSHA SRIRAM MOKHASI ◽  
AGA AMMAR MURTHUZA

Objective: The study was intended to explore whether Monosodium glutamate (MSG) induces oxidative stress on the liver of Wistar albino rats when fed chronically at three different doses, namely, low, mid, and high doses identical to human consumption doses in growing countries. Methods: The acclimatized Wistar albino rats (n=24) were randomly selected and grouped into four groups, namely Control, Low dose MSG (180 mg kg), Mid dose MSG (360 mg/kg), and High dose MSG (720 mg/kg). The animals were orally administered MSG for 120 days. After completion of the experimental period (120 days), euthanized animal liver was homogenized to investigate the oxidative stress marker enzymes such as Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), Catalase (CAT), and Myeloperoxidase (MPO). Results: The MPO showed a significant increase (p<0.05) in liver homogenate of all MSG induced groups when compared to control group. The SOD, CAT, and GPx activity deteriorated (p<0.05) in monosodium induced groups contrasting to the control group. Conclusion: The effects of MSG on oxidative stress markers on liver homogenate in the current study exhibited erratic abnormal changes in oxidative stress markers of monosodium induced groups which contemplate the harmful effects of MSG consumed chronically. The further studies should confirm the genetic basis of oxidative stress damage and transform the safety regulations of MSG consumption throughout the world.


Sign in / Sign up

Export Citation Format

Share Document