scholarly journals Gastroenterocardiology: Or what do the gut and the heart have in common?

2021 ◽  
Vol 46 (1) ◽  
pp. 11-22
Author(s):  
Zoran Joksimović ◽  
Dušan Bastać ◽  
Snežana Pavlović

The gut microbiota of our organism is a community of bacteria, archaea, fungi, viruses and parasites that make up a unique ecosystem in the digestive tract, which consists of about 1014 microorganisms. The diversity of this community between individuals occurs because of the differences in the host genome and the impact of environmental factors, including hygiene, diet, lifestyle and the use of different drugs. Significant evidence suggests that changes in the microbiota could play a role in cardiovascular diseases. The results of research papers for the last two decades have confirmed that altered gut microbiota composition (dysbiosis) contributes to the development of various diseases, including cardiovascular diseases, type 2 diabetes, chronic kidney disease, nonalcoholic fatty liver disease, chronic inflammatory bowel disease and even certain types of cancer. There is growing evidence that in the future, apart from current predisposing factors for cardiovascular and metabolic diseases, including genetic, environmental and lifestyle factors, one should count on new risk factors such as nutritional disproportion and gut dysbiosis. Thus, we look upon the relationship between the gastrointestinal tract and cardiovascular system, i.e. the "gut-heart axis" in a new way.

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3211
Author(s):  
Hang-Yu Li ◽  
Dan-Dan Zhou ◽  
Ren-You Gan ◽  
Si-Yu Huang ◽  
Cai-Ning Zhao ◽  
...  

Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.


2020 ◽  
Author(s):  
Olena H. Kurinna

AbstractNonalcoholic fatty liver disease (NAFLD) bears serious economic consequences for the health care system worldwide and Ukraine, in particular. Cardiovascular diseases (CVD) are the main cause of mortality in NAFLD patients. Changes in the gut microbiota composition can be regarded as a potential mechanism of CVD in NAFLD patients.The purpose of this work was to investigate changes in major gut microbiota phylotypes, Bacteroidetes, Firmicutes and Actinobacteria with quantification of Firmicutes/Bacteroidetes in NAFLD patients with concomitant CVD.The author enrolled 120 NAFLD subjects (25 with concomitant arterial hypertension (AH) and 24 with coronary artery disease (CAD)). The gut microbiota composition was assessed by qPCR.Resultsthe author found a marked tendency towards an increase in the concentration of Bacteroidetes (by 37.11% and 21.30%, respectively) with a decrease in Firmicutes (by 7.38% and 7.77%, respectively) in both groups with comorbid CAD and AH with the identified changes not reaching a statistical significance. The author quantified a statistically significant decrease in the concentration of Actinobacteria in patients with NAFLD with concomitant CAD at 41.37% (p<0.05) as compared with those with an isolated NAFLD. In patients with concomitant AH, the content of Actinobacteria dropped by 12.35%, which was statistically insignificant.Conclusionsthe author established changes in the intestinal microbiota, namely decrease in Actinobacteria in patients with CAD, which requires further research.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Longman Li ◽  
Xiaobo Yang

Manganese (Mn) is an essential element that is involved in the synthesis and activation of many enzymes and in the regulation of the metabolism of glucose and lipids in humans. In addition, Mn is one of the required components for Mn superoxide dismutase (MnSOD) that is mainly responsible for scavenging reactive oxygen species (ROS) in mitochondrial oxidative stress. Both Mn deficiency and intoxication are associated with adverse metabolic and neuropsychiatric effects. Over the past few decades, the prevalence of metabolic diseases, including type 2 diabetes mellitus (T2MD), obesity, insulin resistance, atherosclerosis, hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and hepatic steatosis, has increased dramatically. Previous studies have found that ROS generation, oxidative stress, and inflammation are critical for the pathogenesis of metabolic diseases. In addition, deficiency in dietary Mn as well as excessive Mn exposure could increase ROS generation and result in further oxidative stress. However, the relationship between Mn and metabolic diseases is not clear. In this review, we provide insights into the role Mn plays in the prevention and development of metabolic diseases.


Author(s):  
Ghada Araji ◽  
Julian Maamari ◽  
Fatima Ali Ahmad ◽  
Rana Zareef ◽  
Patrick Chaftari ◽  
...  

ABSTRACT The discovery of immune checkpoint inhibitors (ICIs) has revolutionized the care of cancer patients. However, the response to ICI therapy exhibits substantial interindividual variability. Efforts have been directed to identify biomarkers that predict the clinical response to ICIs. In recent years, the gut microbiome has emerged as a critical player that influences the efficacy of immunotherapy. An increasing number of studies have suggested that the baseline composition of a patient's gut microbiota and its dysbiosis are correlated with the outcome of cancer immunotherapy. This review tackles the rapidly growing body of evidence evaluating the relationship between the gut microbiome and the response to ICI therapy. Additionally, this review highlights the impact of antibiotic-induced dysbiosis on ICI efficacy and discusses the possible therapeutic interventions to optimize the gut microbiota composition to augment immunotherapy efficacy.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
I. S. Stafeev ◽  
A. V. Vorotnikov ◽  
E. I. Ratner ◽  
M. Y. Menshikov ◽  
Ye. V. Parfyonova

Obesity is a growing problem in modern society and medicine. It closely associates with metabolic disorders such as type 2 diabetes mellitus (T2DM) and hepatic and cardiovascular diseases such as nonalcoholic fatty liver disease, atherosclerosis, myocarditis, and hypertension. Obesity is often associated with latent inflammation; however, the link between inflammation, obesity, T2DM, and cardiovascular diseases is still poorly understood. Insulin resistance is the earliest feature of metabolic disorders. It mostly develops as a result of dysregulated insulin signaling in insulin-sensitive cells, as compared to inactivating mutations in insulin receptor or signaling proteins that occur relatively rare. Here, we argue that inflammatory signaling provides a link between latent inflammation, obesity, insulin resistance, and metabolic disorders. We further hypothesize that insulin-activated PI3-kinase pathway and inflammatory signaling mediated by several IκB kinases may constitute negative feedback leading to insulin resistance at least in the fat tissue. Finally, we discuss perspectives for anti-inflammatory therapies in treating the metabolic diseases.


2020 ◽  
Vol 27 ◽  
Author(s):  
Amin Gasmi ◽  
Pavan Kumar Mujawdiya ◽  
Lyudmila Pivina ◽  
Alexandru Doşa ◽  
Yuliya Semenova ◽  
...  

: Intestinal hyperpermeability is a complex metabolic process mediated by different pathways in close relation to the gut microbiota. Previous studies suggested that the gut microbiota is involved in different metabolic regulations, and its imbalance is associated with several metabolic diseases, including obesity. It is well known that intestinal hyperpermeability is associated with dysbiosis, and the combination of these two conditions can lead to an increase in the level of low-grade inflammation in obese patients due to an increase in pro-inflammatory cytokine levels. Inflammatory bowel syndrome often accompanies this condition causing an alteration of the intestinal mucosa and thus reinforcing the dysbiosis and gut hyperpermeability. The onset of metabolic disorders depends on violations of the integrity of the intestinal barrier as a result of increased intestinal permeability. Chronic inflammation due to endotoxemia is responsible for the development of obesity. Metabolic disorders are associated with dysregulation of the microbiota-gut-brain axis and with an altered composition of gut flora. In this review, we will discuss the mechanisms that illustrate the relationship between hyperpermeability, the composition of the gut microbiota, and obesity.


2021 ◽  
Vol 22 (9) ◽  
pp. 4529
Author(s):  
Karina Polak ◽  
Beata Bergler-Czop ◽  
Michał Szczepanek ◽  
Kamila Wojciechowska ◽  
Aleksandra Frątczak ◽  
...  

Psoriasis is a chronic, immune-mediated inflammatory disease that affects around 125 million people worldwide. Several studies concerning the gut microbiota composition and its role in disease pathogenesis recently demonstrated significant alterations among psoriatic patients. Certain parameters such as Firmicutes/Bacteroidetes ratio or Psoriasis Microbiome Index were developed in order to distinguish between psoriatic and healthy individuals. The “leaky gut syndrome” and bacterial translocation is considered by some authors as a triggering factor for the onset of the disease, as it promotes chronic systemic inflammation. The alterations were also found to resemble those in inflammatory bowel diseases, obesity and certain cardiovascular diseases. Microbiota dysbiosis, depletion in SCFAs production, increased amount of produced TMAO, dysregulation of the pathways affecting the balance between lymphocytes populations seem to be the most significant findings concerning gut physiology in psoriatic patients. The gut microbiota may serve as a potential response-to-treatment biomarker in certain cases of biological treatment. Oral probiotics administration as well as fecal microbial transplantation were most reported in bringing health benefits to psoriatic patients. However, the issue of psoriatic bacterial gut composition, its role and healing potential needs further investigation. Here we reviewed the literature on the current state of the relationship between psoriasis and gut microbiome.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sarah Swayze ◽  
Michael Rotondi ◽  
Jennifer L. Kuk

Background. Heavy metals are well known to be associated with cancer outcomes, but its association with obesity and cardiometabolic risk outcomes requires further study. Methods. Adult data from the National Health and Examination Survey (NHANES Continuous 1999–2016, n = 12,636 to 32,012) with data for blood or urinary metals concentrations and body mass index were used. The study aim was twofold: (1) to determine the association between heavy metals and obesity and (2) to examine the influence of heavy metals on the relationship between obesity and hypertension, type 2 diabetes, and dyslipidemia. Logistic regression was used to examine the main effects and interaction effects of metals and obesity for the odds of prevalent hypertension, type 2 diabetes, and dyslipidemia. Models were adjusted for age, gender, ethnicity, smoking status, physical active status, and poverty-income ratio, with additional adjustment for creatinine in models with the urinary measures of heavy metals. High-low concentration categories were defined by grouping metal quintiles with the most similar associations with obesity. Results. Blood lead had a negative linear association with obesity (odds ratio (OR)  = 0.42, 95% confidence interval (CI) = 0.37–0.47). In those with obesity, high blood lead was associated with lower risk of prevalent dyslipidemia, while no association was found in those without obesity. The study observed a curvilinear relationship between urinary antimony and obesity with the moderate group having the highest odds of obesity (OR = 1.36, 1.16–1.59). However, the relationship between urinary antimony and prevalent hypertension and dyslipidemia risk was linear, positive, and independent of obesity. While not associated with prevalent obesity risk, high urinary uranium was associated with 30% ( P = 0.01 ) higher odds for prevalent type 2 diabetes. Conclusions. The impact of environmental factors on obesity and health may be complex, and this study reinforces the heterogeneous relationship between various metals, obesity, and obesity-related metabolic diseases even at levels observed in the general population.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Juan Li ◽  
Qian Hu ◽  
Dai Xiao-yu ◽  
Lv Zhu ◽  
Yi-fan Miao ◽  
...  

Background and Aims. Nonalcoholic fatty liver disease (NAFLD) is an alarming global health problem that is predicted to be the major cause of cirrhosis, hepatocellular carcinoma, and liver transplantation by next decade. Gut microbiota have been revealed playing an important role in the pathogenesis of NAFLD. Sheng-Jiang Powder (SJP), an empirical Chinese medicine formula to treat NAFLD, showed great hepatoprotective properties, but the impact on gut microbiota has never been identified. Therefore, we performed this study to investigate the effect of SJP on gut microbiota in NAFLD mice. Methods. NAFLD was induced by 12 weeks’ high-fat diet (HFD) feeding. Mice were treated with SJP/normal saline daily for 6 weeks. Blood samples were obtained for serum biochemical indices and inflammatory cytokines measurement. Liver tissues were obtained for pathological evaluation and oil red O staining. The expression of lipid metabolism-related genes was quantified by RT-PCR and Western blotting. Changes in gut microbiota composition were analyzed by the 16s rDNA sequencing technique. Results. HFD feeding induced significant increase in bodyweight and serum levels of TG, TC, ALT, and AST. The pathological examination revealed obvious hepatic steatosis in HFD feeding mice. Coadministration of SJP effectively protected against bodyweight increase and lipid accumulation in blood and liver. Increased expression of PPARγ mRNA was observed in HFD feeding mice, but a steady elevation of PPARγ protein level was only found in SJP-treated mice. Meanwhile, the expression of FASN was much higher in HFD feeding mice. Microbiome analysis revealed obvious changes in gut microbiota composition among diverse groups. SJP treatment modulated the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, including norank-f-Erysipelotrichaceae and Roseburia. Conclusions. SJP is efficient in attenuating HFD-induced NAFLD, and it might be partly attributed to the regulation of gut microbiota.


2020 ◽  
Vol 2 (1) ◽  
pp. 10-21
Author(s):  
Qori Emilia

Ensuring microbial food safety has always been a challenge at every stages along the food chain. Meanwhile, healthier community lifestyle demands natural antimicrobial agents to alleviate the increasing use of chemical preservatives to address microbial contamination. Antimicrobial resistance issue has also elevated the effort to search for an alternative way to antibiotics. Bacteriophage (phage) is currently being assessed for its potency as biocontrol agent to enhance food safety and as a tool for therapeutic purpose. Prior to phage application, safety assessment must be conducted in which includes several considerations: from the discovery, toxicological aspects to the impact of phage ingestion on the gut microbiota. The gut microbiota which consist of variety of microorganisms inside the human gastrointestinal tract, cohabitate to each other. Phage is naturally present as one of microorganisms in the human gut and dynamically interacted with other microbial communities. Phage application to foods and food-contact surfaces may leave a residue and cause the phages to be ingested, which in result may alter the gut microbiota composition. Many findings have examined the relationship between gut microbiota and human health, and so is the factors affecting their modulation. This review aimed to discuss several points of view from published research papers related to the challenge of phage administration into the human gut.


Sign in / Sign up

Export Citation Format

Share Document