Effect of different post-emergence herbicides on weeds, crop yield and economics of greengram grown in rainy season

2021 ◽  
Vol 53 (3) ◽  
pp. 300-304
Author(s):  
Narayani Priyadarshini Panda ◽  
K.N. Kalyana Murthy ◽  
Madam Vikramarjun ◽  
Kommireddy Poojitha
Keyword(s):  
Afrika Focus ◽  
1990 ◽  
Vol 6 (2) ◽  
pp. 141-155
Author(s):  
Paul Vossen

The interannual variability of traditional, rainfed agricultural production of Botswana, a country with a typical semi-arid climate, is almost completely accounted for by the quality of the rainy season. It appears that the variability of the national cattle death ratio, total planted area and crop yield are, for more than 95% accounted for by rainy season conditions. As a result, also the nutritional state of the population highly correlates with rainfall. Despite the severe droughts of 1978/79and1985/86, farmers were not discouraged to practice agriculture: in fact, crop production shows a significant positive time trend which becomes apparent, when the trend and the rainy season conditions are analysed in combination with each other. As part of this study, models were developed and validated for a precise and areawise agricultural rainy season quality monitoring and for national agricultural production forecasting in Botswana. One of these models could possibly also be used for the areawise assessment of risks for malnutrition of children under five years old.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1680
Author(s):  
Maysoon A. A. Osman ◽  
Joshua Orungo Onono ◽  
Lydia A. Olaka ◽  
Muna M. Elhag ◽  
Elfatih M. Abdel-Rahman

It is projected that, on average, annual temperature will increase between 2 °C to 6 °C under high emission scenarios by the end of the 21st century, with serious consequences in food and nutrition security, especially within semi-arid regions of sub-Saharan Africa. This study aimed to investigate the impact of historical long-term climate (temperature and rainfall) variables on the yield of five major crops viz., sorghum, sesame, cotton, sunflower, and millet in Gedaref state, Sudan over the last 35 years. Mann–Kendall trend analysis was used to determine the existing positive or negative trends in temperature and rainfall, while simple linear regression was used to assess trends in crop yield over time. The first difference approach was used to remove the effect of non-climatic factors on crop yield. On the other hand, the standardized anomaly index was calculated to assess the variability in both rainfall and temperature over the study period (i.e., 35 years). Correlation and multiple linear regression (MLR) analyses were employed to determine the relationships between climatic variables and crops yield. Similarly, a simple linear regression was used to determine the relationship between the length of the rainy season and crop yield. The results showed that the annual maximum temperature (Tmax) increased by 0.03 °C per year between the years 1984 and 2018, while the minimum temperature (Tmin) increased by 0.05 °C per year, leading to a narrow range in diurnal temperature (DTR). In contrast, annual rainfall fluctuated with no evidence of a significant (p > 0.05) increasing or decreasing trend. The yields for all selected crops were negatively correlated with Tmin, Tmax (r ranged between −0.09 and −0.76), and DTR (r ranged between −0.10 and −0.70). However, the annual rainfall had a strong positive correlation with yield of sorghum (r = 0.64), sesame (r = 0.58), and sunflower (r = 0.75). Furthermore, the results showed that a longer rainy season had significant (p < 0.05) direct relationships with the yield of most crops, while Tmax, Tmin, DTR, and amount of rainfall explained more than 50% of the variability in the yield of sorghum (R2 = 0.70), sunflower (R2 = 0.61), and millet (R2 = 0.54). Our results call for increased awareness among different stakeholders and policymakers on the impact of climate change on crop yield, and the need to upscale adaptation measures to mitigate the negative impacts of climate variability and change.


2003 ◽  
Vol 39 (4) ◽  
pp. 409-421 ◽  
Author(s):  
F. GOMES ◽  
M. K. V. CARR

In Mozambique the sweet potato (Ipomoea batatas) is grown as both a leafy vegetable, the terminal shoots or vines being progressively harvested during the season, and as a root crop. This paper reports the development of crop yield/water-use production functions using data from two irrigation experiments designed to evaluate the effects of water availability and vine harvesting practices on the productivity and water use (ETc) of sweet potato (cv. TIS 2534) during two contrasting seasons in the south of the country. As the frequency of vine harvesting increased, the water-use efficiency (WUE-ETc) for vine production (dry mass) increased from 1–2 to 4–5 kg ha−1 mm−1 during the rainy season, and from 1 to 9 kg ha−1 mm−1 during the dry season. By contrast, there was a corresponding reduction in the WUE-ETc for storage root production from 14 to 8–9 kg ha−1 mm−1 during the rainy season, and from 23 to 15–17 kg ha−1 mm−1 during the dry season. For the total yields (vines plus storage roots) the WUE-ETc during both seasons were independent of the vine harvesting treatment. Separate lines represented each season, the slopes of which were 13 kg ha−1 mm−1 in the rains, and 24 kg ha−1 mm−1 in the dry season. When, however, crop water-use was normalised using either the seasonal mean daily total of incoming solar radiation, or reference crop evapotranspiration (ETo), but not the saturation deficit of the air, a single common, linear relationship with yield resulted. Possible explanations for this are considered. Plotting relative yields against relative rates of water-use, also gave consistent results that could have general application for predicting the effects of water availability on productivity. Vine yields, when harvested frequently, were less sensitive to drought (yield response factor, Ky=0.7–0.9) than storage roots (Ky=1.2). For total production (vines plus roots), the sensitivity to water stress (Ky) increased, from 0.9–1.0 to 1.2, as the interval between vine harvests increased. Farmers in southern Mozambique trying to maximize total yield during the season, under conditions of water uncertainty, should harvest vines at intervals of not more than 14 days.


2020 ◽  
Vol 4 (2) ◽  
pp. 780-787
Author(s):  
Ibrahim Hassan Hayatu ◽  
Abdullahi Mohammed ◽  
Barroon Ahmad Isma’eel ◽  
Sahabi Yusuf Ali

Soil fertility determines a plant's development process that guarantees food sufficiency and the security of lives and properties through bumper harvests. The fertility of soil varies according to regions, thereby determining the type of crops to be planted. However, there is no repository or any source of information about the fertility of the soil in any region in Nigeria especially the Northwest of the country. The only available information is soil samples with their attributes which gives little or no information to the average farmer. This has affected crop yield in all the regions, more particularly the Northwest region, thus resulting in lower food production.  Therefore, this study is aimed at classifying soil data based on their fertility in the Northwest region of Nigeria using R programming. Data were obtained from the department of soil science from Ahmadu Bello University, Zaria. The data contain 400 soil samples containing 13 attributes. The relationship between soil attributes was observed based on the data. K-means clustering algorithm was employed in analyzing soil fertility clusters. Four clusters were identified with cluster 1 having the highest fertility, followed by 2 and the fertility decreases with an increasing number of clusters. The identification of the most fertile clusters will guide farmers on where best to concentrate on when planting their crops in order to improve productivity and crop yield.


2017 ◽  
Author(s):  
Global Cocoa Farmers and Processing Firms and Processing Firms ◽  
IQUAIBOM AKPAN MEX (MEXICATEL SERVICES LIMITED)

2018 ◽  
Vol 24 (1) ◽  
Author(s):  
LAKSHMI CHOUDHARY ◽  
PRABHAWATI PRABHAWATI

Prevalence of soil transmitted helminthes infections in apparently healthy school going children and other 528 people of different districts of Koshi regions of North Bihar were evaluated. Over all incidences of STHs infection was 39.39% during study. High incidence of STH was seen in the rainy season i.e., in the month of July and August, September, significantly higher (P<0.05) .The incidence of Ascaris lumbricoides was highest in the month of August (18.64%). The month of September was 15.25% followed by that of July (14.4%) and October with 10.16%. Also the incidence of hookworm registered the highest incidence in the month of June (19.27%) and lowest in the month of December (4.82%) during the study period. However prevalence of Trichuris trichiura was negligible and it was almost nil in the most of the months but was highest in month of September with 28.57% and lowest in October with 14.00% The climatic factors are responsible for soil transmitted helminthes which are temperature, rainfall and relative humidity. Ascariasis, Trichuriasis and Ancyclostomiasis (Hookworm infection) are found to be endemic in this region.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. D. CHATE ◽  
R. J. CHAVAN

The present study deals with the ant community variation in and around Aurangabad city. During the study total 16 species of ants belonging to twelve genera and four subfamilies were reported in eight habitat from urban and periurban regions. Abundance of ants was more in peri-urban region as compared to urban region. Subfamily myrmicinae was more dominant as compared to other subfamilies. Seasonal abundance of ants was seen to be more in winter season and less in rainy season.


2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


Sign in / Sign up

Export Citation Format

Share Document