scholarly journals Current knowledge and new challenges in exercise immunology

2019 ◽  
Vol 70 (10) ◽  
pp. 250-260 ◽  
Author(s):  
K* Alack ◽  
C* Pilat ◽  
K Krüger
2021 ◽  
Vol 48 (1) ◽  
pp. 5-8
Author(s):  
Mark Brennan-Ing ◽  
Jesus Ramirez-Valles ◽  
Aaron Tax

The aging of people with HIV (PWH) is a major public health accomplishment and a social and cultural phenomenon. It highlights the human capacity to overcome adversity, the effectiveness of public health strategies (e.g., prevention and treatment), and the new challenges as well. Our societies are not well prepared to address the needs of older PWH and the changes they are creating. Stigma toward HIV, older age, and homosexuality, along with racism, have kept PWH largely invisible, resulting in limited investment in prevention and medical and social services. It is imperative that we develop an effective policy response to address the unique needs of PWH. The purpose of this article is to highlight current knowledge and emerging issues in HIV and aging to serve as a foundation on which to develop policy and program recommendations that will meet the new challenge.


2022 ◽  
Vol 78 (01) ◽  
pp. 6616-2022
Author(s):  
MAGDALENA GOLDSZTEJN ◽  
TOMASZ GRENDA ◽  
BEATA KOZAK ◽  
NINA KOZIEŁ ◽  
KRZYSZTOF KWIATEK

Feed microflora remains a very complex and still largely uncharacterized ecosystem. Given the wide range of potential sources of microbial contamination that may come into contact with feed, a variety of microorganisms, including pathogenic ones, can be expected. Microbiological contamination of feeds depends on environmental factors, which are a natural, primary source related to the microflora carried on feed materials and coming from soil, water and air. Microbial contamination may also emerge secondarily in the processing and distribution stages of feed, but also in the breeding stage, where feed may be contaminated by animals showing disease symptoms or asymptomatically. A wide variety of pathogenic microorganisms that are transmitted symptomatically or asymptomatically can cause economic losses to feed producers and farmers, and some of them due to their zoonotic nature can also pose a potential risk to consumers. New feed materials appear on the market, i.e. Insect Processed Animal Proteins, which are part of the strategy of replacing traditional protein sources. These materials are under investigation for their benefits as well as for microbiological safety. The aim of this review was to present the current knowledge on the main microbiological risk factors influencing the quality and safety of feed, as well as new analytical challenges related to the introduction of new feed materials.


Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.


2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2020 ◽  
Vol 63 (1) ◽  
pp. 109-124
Author(s):  
Carly Jo Hosbach-Cannon ◽  
Soren Y. Lowell ◽  
Raymond H. Colton ◽  
Richard T. Kelley ◽  
Xue Bao

Purpose To advance our current knowledge of singer physiology by using ultrasonography in combination with acoustic measures to compare physiological differences between musical theater (MT) and opera (OP) singers under controlled phonation conditions. Primary objectives addressed in this study were (a) to determine if differences in hyolaryngeal and vocal fold contact dynamics occur between two professional voice populations (MT and OP) during singing tasks and (b) to determine if differences occur between MT and OP singers in oral configuration and associated acoustic resonance during singing tasks. Method Twenty-one singers (10 MT and 11 OP) were included. All participants were currently enrolled in a music program. Experimental procedures consisted of sustained phonation on the vowels /i/ and /ɑ/ during both a low-pitch task and a high-pitch task. Measures of hyolaryngeal elevation, tongue height, and tongue advancement were assessed using ultrasonography. Vocal fold contact dynamics were measured using electroglottography. Simultaneous acoustic recordings were obtained during all ultrasonography procedures for analysis of the first two formant frequencies. Results Significant oral configuration differences, reflected by measures of tongue height and tongue advancement, were seen between groups. Measures of acoustic resonance also showed significant differences between groups during specific tasks. Both singer groups significantly raised their hyoid position when singing high-pitched vowels, but hyoid elevation was not statistically different between groups. Likewise, vocal fold contact dynamics did not significantly differentiate the two singer groups. Conclusions These findings suggest that, under controlled phonation conditions, MT singers alter their oral configuration and achieve differing resultant formants as compared with OP singers. Because singers are at a high risk of developing a voice disorder, understanding how these two groups of singers adjust their vocal tract configuration during their specific singing genre may help to identify risky vocal behavior and provide a basis for prevention of voice disorders.


Sign in / Sign up

Export Citation Format

Share Document