scholarly journals On the nature of non-protein receptors from the conceptual point of view. Paradigm for abscisic acid

2019 ◽  
Vol 25 ◽  
pp. 131-136
Author(s):  
B. A. Kurchii

Abscisic acid (ABA) is a biologically active substance that takes part in the various biochemical and physiological processes in the plants. There is currently limited knowledge about how these biochemical and physiological processes are triggered and regulated by ABA. Dozens of receptors have been described for ABA signaling but there is no any information why does ABA have so many receptors and how they act at the molecular levels. In this connection I would like to stress that not all cell proteins conjugated with ABA necessarily can be represented as hormone-receptors complexes. In this paper I proposed that physiological processes in plants are performed at molecular level by elementary chemical reactions (redox reactions) that trigger the cascade of subsequent reactions and that can be caused by various chemical and physical factors. Gene keys (fragments of polynucleotides, non-protein receptors) and gene locks (start fragment of genes) are also described. Keywords: abscisic acid, free radicals, receptors, gene keys, gene locks.

Author(s):  
ILYA GULYAKIN

Modern medicine has achieved significant results in the development of techniques to avoid surgeries. However, surgical methods are still one of the main tools for treating pathologies in the human body. Plastic surgery and cosmetology are gaining popularity every year, and sports injuries require the use of combined treatment methods, but any such intervention leads to the risk of keloids. The younger the person, the higher the likelihood of developing a keloid, due to the high degree of elasticity of the skin at an earlier age, which is prone to scarring than in older people. Women are at higher risk of developing keloids than men because their skin is more elastic. Thus, children and young women are most at risk of keloid formation, both as a result of physiological processes of skin scarring and preference for plastic surgery, cosmetic procedures and other methods of correction. In world pharmaceutical practice, there are not enough existing ways to prevent the development of keloid. It is necessary to conduct research on the selection of a fundamentally new structural basis for a transdermal therapeutic system containing the most effective and safe compounds of the regenerating and antioxidant mechanisms of action (vitamins and other biologically active compounds) from the point of view of preventing the formation of keloids, which will help in solving the problem of not only preventing the formation of keloids in the dermis, but also its subsequent growth and exit to the surface layers of the skin.


2020 ◽  
Vol 26 (27) ◽  
pp. 3234-3250
Author(s):  
Sushil K. Kashaw ◽  
Prashant Sahu ◽  
Vaibhav Rajoriya ◽  
Pradeep Jana ◽  
Varsha Kashaw ◽  
...  

Potential short interfering RNAs (siRNA) modulating gene expression have emerged as a novel therapeutic arsenal against a wide range of maladies and disorders containing cancer, viral infections, bacterial ailments and metabolic snags at the molecular level. Nanogel, in the current medicinal era, displayed a comprehensive range of significant drug delivery prospects. Biodegradation, swelling and de-swelling tendency, pHsensitive drug release and thermo-sensitivity are some of the renowned associated benefits of nanogel drug delivery system. Global researches have also showed that nanogel system significantly targets and delivers the biomolecules including DNAs, siRNA, protein, peptides and other biologically active molecules. Biomolecules delivery via nanogel system explored a wide range of pharmaceutical, biomedical engineering and agro-medicinal application. The siRNAs and DNAs delivery plays a vivacious role by addressing the hitches allied with chronic and contemporary therapeutic like generic possession and low constancy. They also incite release kinetics approach from slow-release while mingling to rapid release at the targets will be beneficial as interference RNAs delivery carriers. Therefore, in this research, we focused on the latest improvements in the delivery of siRNA loaded nanogels by enhancing the absorption, stability, sensitivity and combating the hindrances in cellular trafficking and release process.


1991 ◽  
Vol 56 (9) ◽  
pp. 1963-1970 ◽  
Author(s):  
Jan Hlaváček ◽  
Václav Čeřovský ◽  
Jana Pírková ◽  
Pavel Majer ◽  
Lenka Maletínská ◽  
...  

In a series of analogues of the cholecystokinin octapeptide (CCK-8) the amino acid residues were gradually modified by substituting Gly by Pro in position 4, Trp by His in position 5, Met by Cle in position 6, or the Gly residue was inserted between Tyr and Met in positions 2 and 3 of the peptide chain, and in the case of the cholecystokinin heptapeptide (CCK-7) the Met residues were substituted by Nle or Aib. These peptides were investigated from the point of view of their biological potency in the peripheral and central region. From the results of the biological tests it follows that the modifications carried out in these analogues and in their Nα-Boc derivatives mean a suppression of the investigated biological activities by 2-3 orders of magnitude (at a maximum dose of the tested substance of 2 . 10-2 mg per animal).This means that a disturbance of the assumed biologically active conformation of CCK-8, connected with a considerable decrease of the biological potency of the molecule, takes place not only after introduction of the side chain into its centre (substitution of Gly4), but also after the modification of the side chains of the amino acids or by extension of the backbone in further positions around this central amino acid.


2021 ◽  
Vol 22 (2) ◽  
pp. 669
Author(s):  
Fernando Alferez ◽  
Deived Uilian de Carvalho ◽  
Daniel Boakye

In this review, we address the interaction between abscisic acid (ABA) and gibberellins (GAs) in regulating non-climacteric fruit development and maturation at the molecular level. We review the interplay of both plant growth regulators in regulating these processes in several fruit of economic importance such as grape berries, strawberry, and citrus, and show how understanding this interaction has resulted in useful agronomic management techniques. We then relate the interplay of both hormones with ethylene and other endogenous factors, such as sugar signaling. We finally review the growing knowledge related to abscisic acid, gibberellins, and the genus Citrus. We illustrate why this woody genus can be considered as an emerging model plant for understanding hormonal circuits in regulating different processes, as most of the finest work on this matter in recent years has been performed by using different Citrus species.


1967 ◽  
Vol 242 (10) ◽  
pp. 2343-2355
Author(s):  
Joseph L. Izzo ◽  
John W. Bartlett ◽  
Angela Roncone ◽  
Mary Jane Izzo ◽  
William F. Bale

2018 ◽  
Vol 285 (1883) ◽  
pp. 20180836 ◽  
Author(s):  
Jukka Kekäläinen ◽  
Jonathan P. Evans

‘Sperm competition’—where ejaculates from two or more males compete for fertilization—and ‘cryptic female choice’—where females bias this contest to suit their reproductive interests—are now part of the everyday lexicon of sexual selection. Yet the physiological processes that underlie these post-ejaculatory episodes of sexual selection remain largely enigmatic. In this review, we focus on a range of post-ejaculatory cellular- and molecular-level processes, known to be fundamental for fertilization across most (if not all) sexually reproducing species, and point to their putative role in facilitating sexual selection at the level of the cells and gametes, called ‘gamete-mediated mate choice’ (GMMC). In this way, we collate accumulated evidence for GMMC across different mating systems, and emphasize the evolutionary significance of such non-random interactions among gametes. Our overall aim in this review is to build a more inclusive view of sexual selection by showing that mate choice often acts in more nuanced ways than has traditionally been assumed. We also aim to bridge the conceptual divide between proximal mechanisms of reproduction, and adaptive explanations for patterns of non-random sperm–egg interactions that are emerging across an increasingly diverse array of taxa.


Author(s):  
Haiyan Zhang ◽  
Liping Zhang ◽  
Yunrui Ji ◽  
Yifen Jing ◽  
Lanxin Li ◽  
...  

Abstract The plant-specific VQ gene family participates in diverse physiological processes but little information is available on their role in leaf senescence. Here, we show that the VQ motif-containing proteins, Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 are negative regulators of abscisic acid (ABA)-mediated leaf senescence. Loss of SIB1 and SIB2 function resulted in increased sensitivity of ABA-induced leaf senescence. In contrast, overexpression of SIB1 significantly delayed this process. Moreover, biochemical studies revealed that SIBs interact with WRKY75 transcription factor. Loss of WRKY75 function decreased sensitivity to ABA-induced leaf senescence, while overexpression of WRKY75 significantly accelerated this process. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoters of GOLDEN 2-LIKE1(GLK1) and GLK2, to repress their expression. SIBs repress the transcriptional function of WRKY75 and negatively regulate ABA-induced leaf senescence in a WRKY75-dependent manner. In contrast, WRKY75 positively modulates ABA-mediated leaf senescence in a GLK-dependent manner. In addition, SIBs inhibit WRKY75 function in ABA-mediated seed germination. These results demonstrate that SIBs can form a complex with WRKY75 to regulate ABA-mediated leaf senescence and seed germination.


2020 ◽  
Vol 9 (4) ◽  
pp. 318-327
Author(s):  
Sangeeta Dahiya ◽  
Daizy R. Batish ◽  
Harminader Pal Singh

Pogostemon benghalensis (Burm.f.) Kuntze (Lamiaceae) is an important aromatic plant. Multiple classes of phytochemicals such as flavonoids, phenols, phytosteroids, carbohydrates, fatty acids, glycosides, sterols, terpenoids, tannins, essential oil, and alkaloids have been isolated from the title species. Different plant parts have been used as traditional remedies for various ailments. The present review aims to update and coherent the fragmented information on botanical aspects, phytochemistry, traditional uses, and pharmacological activities. An extensive review of the literature was carried out by using various search engines like PubMed, Scopus, Science Direct, Google Scholar, Google, Scifinder for information. The articles were searched using the keywords "Pogostemon", "Parviflorus’, "benghalensis". Chemical structures of the chemical compounds were drawn using software Chem Draw ultra 8.0. Most of the plant parts have been used for the treatment of various ailments. Phytochemistry reveals that the plant is a rich source of various biologically active compounds. Pogostemon extracts exhibited numerous pharmacological effects like anticancer, anti-inflammatory, antimicrobial and antioxidant activities. In sum, P. benghalensis is a promising aromatic and medicinal plant as depicted by its various traditional uses and pharmacological studies. Bioactive compounds, responsible for its various pharmacological activities at the molecular level, need further detailed investigations. Future clinical studies are also required to validate the various traditional uses of P. benghalensis.


2018 ◽  
Vol 26 (2) ◽  
pp. 296-304
Author(s):  
Elena A. Laksaeva

An interest in plants of Amelanchier genus is stimulated by the necessity of search for plant sources rich in biologically active substances and possessing the ability to influence different physiological processes in a human organism. The article gives information about places of growth of different species of Amelanchier (Amelanchier Medic) and about the fact that its fruits contain high concentration of free sugars, relatively low level of organic acids, sufficient amounts of various vitamins and provitamins and a complex of mineral substances. Nutritive and biological value of Amelanchier fruits in complex may produce a beneficial effect on different biochemical and physiological processes of normal vital activity of a human organism. The data are given about a positive influence of enteral introduction of polysaccharides isolated from Amelanchier fruits, on different physiological processes that enhance adaptational reserves of an organism of experimental animals. In particular, it was shown that watersoluble polysaccharide complex (WSPC) of Amelanchier fruits activates erythropoiesis increasing the amount of erythrocytes and hemoglobin in blood of experimental animals and raises concentration of iron. WSPC improves physical working capacity and increases the body mass of experimental animals. Addition of watersoluble polysaccharide complex of Amelanchier fruits to blood of a healthy donor increases thermal, osmotic and peroxide resistance of erythrocyte membranes thus protecting cells against damage under action of adverse factors in the experiment. Fruits of plants of Amelanchier genus may be recommended to be used as a food additive or a product in dietary and prophylactic therapy.


1981 ◽  
Vol 27 (8) ◽  
pp. 1327-1334 ◽  
Author(s):  
K E Willard ◽  
N G Anderson

Abstract We describe an assay for lymphocyte effectors that is capable of establishing the existence of regulators of lymphocyte gene expression (including post-transcriptional control and protein processing) and has the ability to characterize the response at the molecular level. The hypothesis that circulating effectors substances excreted through the kidney can be actively present in human urine was tested with this assay. Thus, biologically active protein molecules in urine were detected at concentrations of less than 1 mg/L and over a wide range of dilutions. Activities were detected and quantitated by culturing human lymphocytes with human urinary proteins in the presence of [35S]methionine and subsequently analyzing the labeled lymphocyte proteins by two-dimensional gel electrophoresis. Thus, protein analysis by two-dimensional gels was used to indirectly detect changes produced in cultured lymphocytes after exposure to regulatory molecules. Proteins or sets of lymphocyte proteins appeared or disappeared after exposure to normal or pathological human urinary proteins. Normal human urinary proteins triggered the appearance of sets of proteins referred to by number as the "Urocon" proteins and suppressed the synthesis of protein sets referred to as "Urocof" proteins. In addition to the normal alterations described, urinary proteins from individuals with influenza or acute leukemia and after renal transplantation were capable of inducing unique alterations in lymphocyte patterns.


Sign in / Sign up

Export Citation Format

Share Document