scholarly journals Oxidative stress and other risk factors associated with diabetic nephropathy in type 2 diabetes mellitus

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Snežana Mališ Mališ ◽  
Ana Savić Radojević ◽  
Marijana Kovačević ◽  
Olivera Čančar ◽  
Dragana Pavlović Pavlović ◽  
...  

Introduction. The aim of the study was to examine whether biomarkersof oxidative stress and antioxidant enzyme activities are among other riskfactors for diabetic nephropathy (DN).Methods. The study involved 70 patients with type 2 diabetes (37 males,aged 41 to 81 years) allocated to two groups: one of 32 patients with DNand the other of 38 patients without DN. In the study of oxidative stress 15healthy persons were included. All examined patients were interviewed andunderwent objective examination. Their serum and urine samples were analyzedin order to estimate the quality of glycoregulation and kidney function.Protein thiol groups (P-SH), antioxidant enzyme activities [superoxidedismutase (SOD) and glutathione peroxidase (GPX)] were determined inplasma spectrophotometrically and malondialdehyde-adducts (MDA) byenzyme immunoassay.Results. No significant differences were found between the two groupsfor demographic characteristics, duration and treatment of diabetes, bloodpressure, fasting glucose level and HbA1c. Patients with DN had a higherbody mass index, lower estimated glomerular filtration rate (eGFR) andhigher albuminuria and proteinuria. Plasma activity of GPX and SOD as wellas levels of MDA adducts and P-SH groups were similar in patients with andwithout DN, but GPX and SOD plasma activities were significantly lower andplasma level of MDA significantly higher in all patients than in healthy controls.Patient gender, age, BMI, HbA1c and plasma level of P-SH and MDAwere selected as significant predictors of DN. Patient age, duration of diabetes,serum phosphorus, uric acid levels and plasma SOD activity were negativelyassociated with eGFR. Patient age, serum levels of protein and albuminand plasma GPX activity were negatively, while systolic BP, serum levelsof uric acid and cholesterol were positively associated with proteinuria.Conclusion. Biomarkers of oxidative protein and lipid damage were selectedas risk factors for DN, besides several other well known risk factors.

2007 ◽  
Vol 53 (3) ◽  
pp. 511-519 ◽  
Author(s):  
Jason HY Wu ◽  
Natalie C Ward ◽  
Adeline P Indrawan ◽  
Coral-Ann Almeida ◽  
Jonathan M Hodgson ◽  
...  

Abstract Background: Vitamin E isomers may protect against atherosclerosis. The aim of this study was to compare the effects of supplementation with either α-tocopherol (αT) or mixed tocopherols rich in γ-tocopherol (γT) on markers of oxidative stress and inflammation in patients with type 2 diabetes. Methods: In a double-blind, placebo-controlled trial, 55 patients with type 2 diabetes were randomly assigned to receive (500 mg/day) (a) αT, (b) mixed tocopherols, or (c) placebo for 6 weeks. Cellular tocopherols, plasma and urine F2-isoprostanes, erythrocyte antioxidant enzyme activities, plasma inflammatory markers, and ex vivo assessment of eicosanoid synthesis were analyzed pre- and postsupplementation. Results: Neutrophil αT and γT increased (both P <0.001) with mixed tocopherol supplementation, whereas αT (P <0.001) increased and γT decreased (P <0.005) after αT supplementation. Both αT and mixed tocopherol supplementation resulted in reduced plasma F2-isoprostanes (P <0.001 and P = 0.001, respectively) but did not affect 24-h urinary F2-isoprostanes or erythrocyte antioxidant enzyme activities. Neither αT nor mixed tocopherol supplementation affected plasma C-reactive protein, interleukin 6, tumor necrosis factor-α, or monocyte chemoattractant protein-1. Stimulated neutrophil leukotriene B4 production decreased significantly in the mixed tocopherol group (P = 0.02) but not in the αT group (P = 0.15). Conclusions: The ability of tocopherols to reduce systemic oxidative stress suggests potential benefits of vitamin E supplementation in patients with type 2 diabetes. In populations with well-controlled type 2 diabetes, supplementation with either αT or mixed tocopherols rich in γT is unlikely to confer further benefits in reducing inflammation.


2019 ◽  
Vol 44 (3) ◽  
pp. 271-281 ◽  
Author(s):  
Manel Gargouri ◽  
Ahlem Soussi ◽  
Amel Akrouti ◽  
Christian Magné ◽  
Abdelfattah El Feki

Oxidative damage has been proposed as a possible mechanism involved in lead toxicity. This study investigated the possible protective effect of dietary Arthrospira platensis supplementation against lead acetate-induced kidney injury in adult male rats. Rats were divided into 4 groups: normal rats (control rats), rats treated with spirulina, rats treated with lead (Pb) (0.344 g/kg body weight), and rats treated with Pb and spirulina. The exposure of rats to Pb for 30 days provoked renal damage with significant increases in hematological parameters, oxidative stress-related parameters (i.e., thiobarbituric acid reactive substances, protein carbonyl content, advanced oxidation protein products, and hydrogen peroxide), creatinine and urea levels in plasma, and uric acid level in urine. Conversely, antioxidant enzyme activities (i.e., catalase, glutathione peroxidase, and superoxide dismutase) and levels of nonprotein thiols, plasma uric acid, and urinary creatinine and urea decreased. The administration of spirulina to Pb-treated rats significantly improved weight, peripheral blood parameters, oxidative stress-related parameters, renal biomarker levels, and antioxidant enzyme activities. Also, rats treated with Pb and spirulina had normal kidney histology. These healing effects are likely the result of the high phenol content and significant antioxidant capacity of A. platensis. Our data strongly suggest that spirulina supplementation improves kidney function and plays an important role in the prevention of complications of Pb intoxication.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Sumit Rajput

Abstract Background and Aims Diabetic nephropathy is not only a common and severe microvascular complication of diabetes mellitus but also the leading cause of renal failure. Aqueous extract of leaves of Gymnema sylvestre (ALGS) has been reported to cause reversible increases in intracellular calcium, hypolipidemic activity and insulin secretion in mouse and human β cells with type 2 diabetes. The present study aimed to investigate the antidiabetic and renoprotective effects of ALGS in a rat model of type 2 diabetic mellitus. Method Male Sprague-Dawley rats with type 2 diabetes induced by a high-fat diet (HFD)/streptozotocin (STZ) were treated with ALGS at dosages of 0.5% and 1% (w/w) daily for 4 weeks. At the end of the experimental period, body weight, serum glucose levels, insulin levels, and kidney function were assessed. Furthermore, antioxidant enzyme and lipid peroxide levels were determined in the kidney with histopathological examination Molecular mechanism underlying the functioning of ALGS, mouse glomerular mesangial cells (MES-13) treated with high glucose (HG, 25 mM glucose) were chosen as a model for an examination of the signal transduction pathway of ALGS. Results The results revealed that ALGS improved diabetic kidney injury by reducing blood glucose, serum creatinine, and blood urea nitrogen levels and enhanced antioxidant enzyme activities in kidney tissue. Treatment with ALGS significantly reduced the malondialdehyde and 8-hydroxy-2-deoxyguanosine levels and increased serum insulin levels; expression of renal superoxide dismutase, catalase, and glutathione peroxidase activities; and glutathione content. Histological studies have also demonstrated that ALGS treatment inhibited the dilation of Bowman's capsule, which confirmed its renoprotective action in diabetes. In addition, treatment with ALGS attenuated 25 mM HG-induced suppressed nuclear factor erythroid 2-related factor 2 and antioxidant enzyme expression in MES-13 cells. Conclusion The results of present study reveal that ALGS extract could be useful intervention in the treatment of diabetes mellitus and, through antioxidative pathways.


2019 ◽  
Vol 70 (1) ◽  
pp. 18-29 ◽  
Author(s):  
Pinar Erkekoglu ◽  
Ming-Wei Chao ◽  
Chia-Yi Tseng ◽  
Bevin P. Engelward ◽  
Ozge Kose ◽  
...  

AbstractExposure to alkyl anilines may lead to bladder cancer, which is the second most frequent cancer of the urogenital tract. 3,5-dimethylaniline is highly used in industry. Studies on its primary metabolite 3,5-dimethylaminophenol (3,5-DMAP) showed that this compound causes oxidative stress, changes antioxidant enzyme activities, and leads to death of different mammalian cells. However, there is no in vitro study to show the direct effects of 3,5-DMAP on human bladder and urothelial cells. Selenocompounds are suggested to decrease oxidative stress caused by some chemicals, and selenium supplementation was shown to reduce the risk of bladder cancer. The main aim of this study was to investigate whether selenocompounds organic selenomethionine (SM, 10 µmol/L) or inorganic sodium selenite (SS, 30 nmol/L) could reduce oxidative stress, DNA damage, and apoptosis in UROtsa cells exposed to 3,5-DMAP. 3,5-DMAP caused a dose-dependent increase in intracellular generation of reactive oxygen species, and its dose of 50 µmol/L caused lipid peroxidation, protein oxidation, and changes in antioxidant enzyme activities in different cellular fractions. The comet assay also showed single-strand DNA breaks induced by the 3,5-DMAP dose of 50 µmol/L, but no changes in double-strand DNA breaks. Apoptosis was also triggered. Both selenocompounds provided partial protection against the cellular toxicity of 3,5-DMAP. Low selenium status along with exposure to alkyl anilines can be a major factor in the development of bladder cancer. More mechanistic studies are needed to specify the role of selenium in bladder cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mohd Jokha Yahya ◽  
Patimah Binti Ismail ◽  
Norshariza Binti Nordin ◽  
Abdah Binti Md Akim ◽  
Wan Shaariah Binti Md Yusuf ◽  
...  

Type 2 diabetes mellitus (T2DM) is associated with a high incidence of nephropathy. The aim of this study was to investigate the association of a genetic polymorphism of carnosinase (CNDP1-D18S880and -rs2346061), endothelial nitric oxide synthase (NOS3-rs1799983), and manganese superoxide dismutase (MnSOD-rs4880) genes with the development of diabetic nephropathy among Malaysian type 2 diabetic patients. A case-control association study was performed using 652 T2DM patients comprising 227 Malays (without nephropathy = 96 and nephropathy = 131), 203 Chinese (without nephropathy = 95 and nephropathy = 108), and 222 Indians (without nephropathy = 136 and nephropathy = 86). DNA sequencing was performed for theD18S880ofCNDP1, while the rest were tested using DNA Sequenom MassARRAY to identify the polymorphisms. DNA was extracted from the secondary blood samples taken from the T2DM patients. The alleles and genotypes were tested using four genetic models, and the best mode of inheritance was chosen based on the leastpvalue. Thers2346061ofCNDP1was significantly associated with diabetic nephropathy among the Indians only with OR = 1.94 and 95% CI = (1.76–3.20) and fitted best the multiplicative model, whileD18S880was associated among all the three major races with the Malays having the strongest association with OR = 2.46 and 95% CI = (1.48–4.10), Chinese with OR = 2.26 and 95% CI = (1.34–3.83), and Indians with OR = 1.77 and 95% CI = (1.18–2.65) in the genotypic multiplicative model. The best mode of inheritance for bothMnSODandNOS3was the additive model. ForMnSOD-rs4880, the Chinese had OR = 2.8 and 95% CI = (0.53–14.94), Indians had OR = 2.4 and 95% CI = (0.69–2.84), and Malays had OR = 2.16 and 95% CI = (0.54–8.65), while forNOS3-rs1799983, the Indians had the highest risk with OR = 3.16 and 95% CI = (0.52–17.56), followed by the Chinese with OR = 3.55 and 95% CI = (0.36–35.03) and the Malays with OR = 2.89 and 95% CI = (0.29–28.32). The four oxidative stress-related polymorphisms have significant effects on the development of nephropathy in type 2 diabetes patients. The genes may, therefore, be considered as risk factors for Malaysian subjects who are predisposed to T2DM nephropathy.


1994 ◽  
Vol 120 (6) ◽  
pp. 374-377 ◽  
Author(s):  
K. Punnonen ◽  
M. Ahotupa ◽  
K. Asaishi ◽  
M. Hy�ty ◽  
R. Kudo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document